图像处理算法(图像处理算法工程师招聘)
本篇文章给大家谈谈图像处理算法,以及图像处理算法工程师招聘对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
在图像处理中有哪些算法?
1、图像变换:
由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,可减少计算量,获得更有效的处理。它在图像处理中也有着广泛而有效的应用。
2、图像编码压缩:
图像编码压缩技术可减少描述图像的数据量,以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3、图像增强和复原:
图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
4、图像分割:
图像分割是数字图像处理中的关键技术之一。
图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。
5、图像描述:
图像描述是图像识别和理解的必要前提。
一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。
6、图像分类:
图像分类属于模式识别的范畴,顷陪其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。
图像分类常采用经典的模式识别方法,有统计模式分类和句法模式分类。
扩展资料:
图像处理主要应用在摄影及印刷、卫星图像处理、医学图像处理、面孔识别、特征识别、显微图像处孙乎颂理则郑和汽车障碍识别等。
数字图像处理技术源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约传输了一幅照片,采用了数字压缩技术。
数字图像处理技术可以帮助人们更客观、准确地认识世界,人的视觉系统可以帮助人类从外界获取3/4以上的信息,而图像、图形又是所有视觉信息的载体,尽管人眼的鉴别力很高,可以识别上千种颜色,
但很多情况下,图像对于人眼来说是模糊的甚至是不可见的,通过图象增强技术,可以使模糊甚至不可见的图像变得清晰明亮。
参考资料来源:百度百科-图像处理
图像变换的目的是什么,常用的图像变换算法有哪些
图像变换的目的为了有效和快速地对图像进行处理和分析,需要将原定义在图像空间的图像以某种形式转换到另外的空间,利用空间的特有性质方便地进行一定的加工,最后再转换回图像空间以得到所需的效果。
图像变换是对图像处理算法的总结,它可以分为四个部分:空域变换等维度算法,空域变换变维度算法,值域变换等维度算法和值域变换变维度算法。
其中空域变换主蚂链要指图像在几何上的变换,而值域变换主要指图像在像素值上的变换。等维度变换是在相同的维度空间中,而变维度变换是在不同的维度空间中,例如二维到三维,灰度空间到彩色空间。
扩展资料:
相关延伸:图像简介
21世纪是一个充满信息的时代,图像作为人类感知世界的视觉基础,是人类获取信息、表达信息和传递信息的重要手段。数字图像处理,即用计算机对图像进行处理,其发展历史并不长。数字图像处理技术源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约传输了一幅照片,采用了数字压缩技术。
首先数字图像处理技术可以帮助人们更客观、准确地认识世界,人的视觉系统可以帮助人类从外界获取3/4以上的信息,而图像、图形又是所有视觉信息的载体,尽管人眼的鉴别力很高;
可以识别上千种颜色,但很多情况下,图像对于人眼来说是模糊的甚至是不可见的,通拿闹过图象增强技术,可以使模糊甚至不可见的图像变得清晰明亮。
在计算机中,按照颜色和灰度的多少可以将图像分为二值图像、灰度图像、索引图像和真彩色RGB图像四种基本类型。大多数图像处理软件都支持这四种类型的图像。
中国物联网校企联盟认为图像处理将会是物联网产业发展的重要支柱之一,它的具体应用是指纹识别技术。
参考资消物罩料来源:百度百科-图像处理
参考资料来源:百度百科-图像变换
[img]java数字图像处理常用算法
前些时候做毕业设计 用java做的数字图像处理方面的东西 这方面的资料ms比较少 发点东西上来大家共享一下 主要就是些算法 有自己写的 有人家的 还有改人家的 有的算法写的不好 大家不要见笑
一 读取bmp图片数据
// 获取待检测图像 数据保存在数组 nData[] nB[] nG[] nR[]中
public void getBMPImage(String source) throws Exception { clearNData(); //清除数据保存区 FileInputStream fs = null; try { fs = new FileInputStream(source); int bfLen = ; byte bf[] = new byte[bfLen]; fs read(bf bfLen); // 读取 字节BMP文件头 int biLen = ; byte bi[] = new byte[biLen]; fs read(bi biLen); // 读取 字节BMP信息头
// 源图宽度 nWidth = (((int) bi[ ] xff) ) | (((int) bi[ ] xff) ) | (((int) bi[ ] xff) ) | (int) bi[ ] xff;
// 源图高度 nHeight = (((int) bi[ ] xff) ) | (((int) bi[ ] xff) ) | (((int) bi[ ] xff) ) | (int) bi[ ] xff;
// 位数 nBitCount = (((int) bi[ ] xff) ) | (int) bi[ ] xff;
// 源图大小 int nSizeImage = (((int) bi[ ] xff) ) | (((int) bi[ ] xff) ) | (((int) bi[ ] xff) ) | (int) bi[ ] xff;
// 对 位BMP进行解析 if (nBitCount == ){ int nPad = (nSizeImage / nHeight) nWidth * ; nData = new int[nHeight * nWidth]; nB=new int[nHeight * nWidth]; nR=new int[nHeight * nWidth]; nG=new int[nHeight * nWidth]; 键带 byte bRGB[] = new byte[(nWidth + nPad) * * nHeight]; fs read(bRGB (nWidth + nPad) * * nHeight); int nIndex = ; for (int j = ; j nHeight; j++){ for (int i = ; i nWidth; i++) { nData[nWidth * (nHeight j ) + i] = ( xff) | (((int) bRGB[nIndex + ] xff) ) | (((int) bRGB[nIndex + ] xff) ) | (int) bRGB[nIndex] xff; nB[nWidth * (nHeight j ) + i]=(int) bRGB[nIndex] xff; nG[nWidth * (nHeight j ) + i]=(int) bRGB[nIndex+ ] xff; nR[nWidth * (nHeight j ) + i]=(int) bRGB[nIndex+ ] xff; 稿物芦 nIndex += ; } nIndex += nPad; } // Toolkit kit = Toolkit getDefaultToolkit(); // image = kit createImage(new MemoryImageSource(nWidth nHeight // nData nWidth));
/* 蚂册 //调试数据的读取
FileWriter fw = new FileWriter( C:\\Documents and Settings\\Administrator\\My Documents\\nDataRaw txt );//创建新文件 PrintWriter out = new PrintWriter(fw); for(int j= ;jnHeight;j++){ for(int i= ;inWidth;i++){ out print(( * +nData[nWidth * (nHeight j ) + i])+ _ +nR[nWidth * (nHeight j ) + i]+ _ +nG[nWidth * (nHeight j ) + i]+ _ +nB[nWidth * (nHeight j ) + i]+ ); } out println( ); } out close();*/ } } catch (Exception e) { e printStackTrace(); throw new Exception(e); } finally { if (fs != null) { fs close(); } } // return image; }
二 由r g b 获取灰度数组
public int[] getBrightnessData(int rData[] int gData[] int bData[]){ int brightnessData[]=new int[rData length]; if(rData length!=gData length || rData length!=bData length || bData length!=gData length){ return brightnessData; } else { for(int i= ;ibData length;i++){ double temp= *rData[i]+ *gData[i]+ *bData[i]; brightnessData[i]=(int)(temp)+((temp (int)(temp)) ? : ); } return brightnessData; } }
三 直方图均衡化
public int [] equilibrateGray(int[] PixelsGray int width int height) { int gray; int length=PixelsGray length; int FrequenceGray[]=new int[length]; int SumGray[]=new int[ ]; int ImageDestination[]=new int[length]; for(int i = ; i length ;i++) { gray=PixelsGray[i]; FrequenceGray[gray]++; } // 灰度均衡化 SumGray[ ]=FrequenceGray[ ]; for(int i= ;i ;i++){ SumGray[i]=SumGray[i ]+FrequenceGray[i]; } for(int i= ;i ;i++) { SumGray[i]=(int)(SumGray[i]* /length); } for(int i= ;iheight;i++) { for(int j= ;jwidth;j++) { int k=i*width+j; ImageDestination[k]= xFF | ((SumGray[PixelsGray[k]] ) | (SumGray[PixelsGray[k]] ) | SumGray[PixelsGray[k]]); } } return ImageDestination; }
四 laplace 阶滤波 增强边缘 图像锐化
public int[] laplace DFileter(int []data int width int height){ int filterData[]=new int[data length]; int min= ; int max= ; for(int i= ;iheight;i++){ for(int j= ;jwidth;j++){ if(i== || i==height || j== || j==width ) filterData[i*width+j]=data[i*width+j]; else filterData[i*width+j]= *data[i*width+j] data[i*width+j ] data[i*width+j+ ] data[(i )*width+j] data[(i )*width+j ] data[(i )*width+j+ ] data[(i+ )*width+j] data[(i+ )*width+j ] data[(i+ )*width+j+ ]; if(filterData[i*width+j]min) min=filterData[i*width+j]; if(filterData[i*width+j]max) max=filterData[i*width+j]; } }// System out println( max: +max);// System out println( min: +min); for(int i= ;iwidth*height;i++){ filterData[i]=(filterData[i] min)* /(max min); } return filterData; }
五 laplace 阶增强滤波 增强边缘 增强系数delt
public int[] laplaceHigh DFileter(int []data int width int height double delt){ int filterData[]=new int[data length]; int min= ; int max= ; for(int i= ;iheight;i++){ for(int j= ;jwidth;j++){ if(i== || i==height || j== || j==width ) filterData[i*width+j]=(int)(( +delt)*data[i*width+j]); else filterData[i*width+j]=(int)(( +delt)*data[i*width+j] data[i*width+j ]) data[i*width+j+ ] data[(i )*width+j] data[(i )*width+j ] data[(i )*width+j+ ] data[(i+ )*width+j] data[(i+ )*width+j ] data[(i+ )*width+j+ ]; if(filterData[i*width+j]min) min=filterData[i*width+j]; if(filterData[i*width+j]max) max=filterData[i*width+j]; } } for(int i= ;iwidth*height;i++){ filterData[i]=(filterData[i] min)* /(max min); } return filterData; } 六 局部阈值处理 值化
// 局部阈值处理 值化 niblack s method /*原理 T(x y)=m(x y) + k*s(x y) 取一个宽度为w的矩形框 (x y)为这个框的中心 统计框内数据 T(x y)为阈值 m(x y)为均值 s(x y)为均方差 k为参数(推荐 )计算出t再对(x y)进行切割 / 这个算法的优点是 速度快 效果好 缺点是 niblack s method会产生一定的噪声 */ public int[] localThresholdProcess(int []data int width int height int w int h double coefficients double gate){ int[] processData=new int[data length]; for(int i= ;idata length;i++){ processData[i]= ; } if(data length!=width*height) return processData; int wNum=width/w; int hNum=height/h; int delt[]=new int[w*h]; //System out println( w; +w+ h: +h+ wNum: +wNum+ hNum: +hNum); for(int j= ;jhNum;j++){ for(int i= ;iwNum;i++){ //for(int j= ;j ;j++){ // for(int i= ;i ;i++){ for(int n= ;nh;n++) for(int k= ;kw;k++){ delt[n*w+k]=data[(j*h+n)*width+i*w+k]; //System out print( delt[ +(n*w+k)+ ]: +delt[n*w+k]+ ); } //System out println(); /* for(int n= ;nh;n++) for(int k= ;kw;k++){ System out print( data[ +((j*h+n)*width+i*w+k)+ ]: +data[(j*h+n)*width+i*w+k]+ ); } System out println(); */ delt=thresholdProcess(delt w h coefficients gate); for(int n= ;nh;n++) for(int k= ;kw;k++){ processData[(j*h+n)*width+i*w+k]=delt[n*w+k]; // System out print( delt[ +(n*w+k)+ ]: +delt[n*w+k]+ ); } //System out println(); /* for(int n= ;nh;n++) for(int k= ;kw;k++){ System out print( processData[ +((j*h+n)*width+i*w+k)+ ]: +processData[(j*h+n)*width+i*w+k]+ ); } System out println(); */ } } return processData; }
七 全局阈值处理 值化
public int[] thresholdProcess(int []data int width int height double coefficients double gate){ int [] processData=new int[data length]; if(data length!=width*height) return processData; else{ double sum= ; double average= ; double variance= ; double threshold; if( gate!= ){ threshold=gate; } else{ for(int i= ;iwidth*height;i++){ sum+=data[i]; } average=sum/(width*height); for(int i= ;iwidth*height;i++){ variance+=(data[i] average)*(data[i] average); } variance=Math sqrt(variance); threshold=average coefficients*variance; } for(int i= ;iwidth*height;i++){ if(data[i]threshold) processData[i]= ; else processData[i]= ; } return processData; } }
八 垂直边缘检测 sobel算子
public int[] verticleEdgeCheck(int []data int width int height int sobelCoefficients) throws Exception{ int filterData[]=new int[data length]; int min= ; int max= ; if(data length!=width*height) return filterData; try{ for(int i= ;iheight;i++){ for(int j= ;jwidth;j++){ if(i== || i== || i==height || i==height ||j== || j== || j==width || j==width ){ filterData[i*width+j]=data[i*width+j]; } else{ double average; //中心的九个像素点 //average=data[i*width+j] Math sqrt( )*data[i*width+j ]+Math sqrt( )*data[i*width+j+ ] average=data[i*width+j] sobelCoefficients*data[i*width+j ]+sobelCoefficients*data[i*width+j+ ] data[(i )*width+j ]+data[(i )*width+j+ ] data[(i+ )*width+j ]+data[(i+ )*width+j+ ]; filterData[i*width+j]=(int)(average); } if(filterData[i*width+j]min) min=filterData[i*width+j]; if(filterData[i*width+j]max) max=filterData[i*width+j]; } } for(int i= ;iwidth*height;i++){ filterData[i]=(filterData[i] min)* /(max min); } } catch (Exception e) { e printStackTrace(); throw new Exception(e); } return filterData; }
九 图像平滑 * 掩模处理(平均处理) 降低噪声
lishixinzhi/Article/program/Java/hx/201311/26286
关于图像处理算法和图像处理算法工程师招聘的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。