gjk算法(gjk算法只能用于两个凸体之间)
by intanet.cn ca 算法 on 2024-04-21
简介:
GJK算法是一种用于判断两个凸多边形是否相交的算法,也可以用于寻找两个凸多边形之间的最短距离。它的全称是Gilbert-Johnson-Keerthi算法,是由Daniel Gilbert, Ellis Johnson和Samir Pavlović于1988年提出的。
多级标题:
1. GJK算法原理
2. GJK算法步骤
3. GJK算法应用
内容详细说明:
1. GJK算法原理:
GJK算法的原理是利用Minkowski差集(Minkowski Difference)来求解两个凸多边形之间的最小距离。Minkowski差集是指两个凸多边形分别取负形后的凸多边形之间的集合。GJK算法通过不断收缩Minkowski差集的顶点来逼近最小距离。
2. GJK算法步骤:
GJK算法的步骤可以概括为以下几个步骤:
- 初始化: 选择一个初始方向,构建一个包含原点的简单x形结构。
- 迭代: 在每次迭代中,计算Minkowski差集上离原点最远的点,并判断是否包含原点。如果包含原点,则说明两个凸多边形相交,否则更新搜索方向。
- 收缩: 不断收缩Minkowski差集的顶点,直到找到两个凸多边形之间的最小距离或者判断出它们相交。
3. GJK算法应用:
GJK算法在计算机图形学和物理引擎中有广泛的应用。比如在碰撞检测中,可以用GJK算法来判断两个物体是否相交,从而避免碰撞。在游戏开发中,GJK算法可以用来检测玩家和其他物体之间的碰撞,以及计算物体之间的最短距离。
总结:
GJK算法是一种高效的凸多边形相交检测算法,它通过Minkowski差集来求解两个凸多边形之间的最小距离。它在计算机图形学和物理引擎中有着广泛的应用,可以帮助我们实现更加精确的碰撞检测和距离计算。