数据管理(数据管理岗位职责)

本篇文章给大家谈谈数据管理,以及数据管理岗位职责对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

如何做好数据管理

数据管理是信息化建设工作中的重点之一,通过健全组织、规范管理、比对分析、综合运用,把数据管理与企业生产有机结合,从而使企业利益进一步提高。

(一)提高认识,科学管理

对数据进行科学的管理,只有上升到战略的高度上去认识和重视才行。数据是主体软件应用的基础。所有的企业资料最终都汇集成数据,保存在计算机系统的数据库中,工作人员通过信息交互系统从后台数据库获取所需数据,经中间层信息系统处理后得到结果,所有的查询、分析都需要真实、全面、准确、一致的数据。企业信息化建设中存在的一些问题,主要不是因为没有好的系统,而是因为已有的系统没有得到很好的应用。因此,数据的准确性、完整性、科学性,将直接决定结果的正确性。也必将影响信息化应用的成效。同时,只有科学的管理,才能保证数据的准确、完整。

(二)健全职能部门,完善管理制度

数据管理职能因该有专门的部门实施,因此应成立专门数据管理领导小组和数据管理(处拿改理)部门,将数据的监管职责赋予数据管理部门,由数据管理部门集中管理监控数据,各有关职责部门配合。各单位也相应设立相应的数据处理岗。然后制发《数据管理办法》、《数据管理责任追究暂行办法》,明确数据管理部门的职责范围、工作程序、监控内容、考核奖惩等,建立数据通报、培训等制度,制定信息采集、审核、录入、分析比对、信息传递等相关办法,使数据监管与银磨运用工作逐步规范。

(三)严控数据录入环节,加强源头控制

一是提高人员素质。对数据录入人员进行软件操作、数据录入、职责规定等知识培训,明确职责、明确各级、各岗数据管理人员工作职责及质量标准;明确综合管理软件的问题提交、处理、反馈程序,数据出现问题都由数据管理部门统一负责接收、研究解决并反馈,避免多头提交、多头请示,为数据管理工作提供人员素质保障。

二是加强信息系统提高系统本身的差错纠错功能,减少或避免数据录入的错误。

三是创建合理高效工作流。结合实际情况制定工作流,明确职责、避免重复、方便管理为目的,细化岗位,一人多岗(单位人数少)或一岗多人(岗位工作量大),科学的`连接每个岗位,组织起高效的工作流,减少数据冗余,最大限度地提高征管效率。

四是原则行事。按照“三不录”原则,即不规范不录、不安全不录、未审核不录,严把数据的采集、审核、审批、录入、修改等环节。确保系统数据完整、准确,系统运转优质、高效。

五是通报考核。建立通报制度。例如,坚持 “一月一通报、一月一讲评、一月一考核、一月一追究”。按时将各单位征管数据质量完成情况等,在公文处理系统和网站上发布数据通报,并在每月的局务例会上,由分管局长对上月数据质量进行通报讲评,分析症结,提出整改措施。建立日常考核台账,按月考核,并将各单位得分情况张榜公布;同时,按照责任追究办法,追究相关单位和人员的责任。对全年数据质量评比排名在后几位的,目标管理考核中给予倒扣分。制定数据考核指标,数据质量考核中,低于平均指标的,目标管理考核一票否优。

(四)思想要重视,全员要参与

加强数据管理,全面推进企业信息化建设应用进程,离不开各级领导的重视和支持,只有领导重视,才是做好数据管理和深入分析的关键,信息化建设才能真正得到发展。同时,所有的工作人员,都应该把好各自工作环节的数据管理,不制造垃圾数据、错误数据,发现问题及时解决,追根求源,争取将错误数据、垃圾数据剔除干净,确保数据的正确完整。

(五)协作要到位

数据处理工作中,信息技术是实现手段,信息技术应用的先进性决定了系统软件的质量水平高低,而业务的规范程度决定锋敏斗了信息化推进的广度和深度。数据处理应用不仅涉及信息化技术的选择和应用,同时还涉及到企业业务流程的规范和统一,并且直接影响企业系统信息化建设的成效。所以,每一项企业管理数据处理及其具体应用,都离不开信息部门和业务部门的紧密合作、协同工作。技术部门与业务部门需要很好的合作和相互的支持和配合,才能使数据处理应用程度深化和完善。

(六)机制要健全

在业已建立机制的基础上,要进一步完善数据分析应用管理办法,建立部门工作责任制,包括项目管理制度、信息发布制度等;建立与数据处理应用相适应的企业业务配套制度;建立信息技术支持、安全和运维保障制度,包括信息安全应急处置预案、运维岗责体系等,保障数据分析应用工作健康有序发展。

[img]

数据管理包括哪些内容

数据管理是规划、控制和提供数据及信息资产的一组业务职能,包括开发执行监督有关数据的计划、政策、方案、项目、流程、方法和程序,从而控制、保护孝余册、交付和提高数据和信息资产的价值。

数据治理职能:

1、业务词汇表:对于企业巧宏而言,建立统一的业务术语非常关键,如果这些术语和上下文不能横跨整个企业的范畴,那么它将会在不同的业务部门中出现不同的表述。

2、元数据:元数据要求数据元素和术语的一致性定义,它们通常聚集于业务词汇表上。

3、数据质量:数据质量的具体措施包括数据详细检查的流程,目的是让业务部门信任这些数据。数据质量是非常重要的,有人认为它不同于治理,它极大提升了治理的水平。毁纤

4、生命周期管理:数据保存的时间跨度、数据保存的位置,以及数据如何使用都会随着时间而产生变化,某些生命周期管理还会受到法律法规的影响。

企业如何进行数据化管理

导语:对于企业来讲,数据化运用和管理无处不在,无论是企业日常运营,还是企业的营销企划,都是企业所有管理者或经营者无可否认的重要命题。那么企业如何进行数据化管理,一起了解一下吧!

然而,做好数据化应用,是一件系统而又复杂的课题。企业如何真正把生产计划、营销战略、财务战略、经营战略等体系有效的结合运用是非常考验管理者知识智慧的。但有的企业主根本无视统计管理、数据分析与经营和营销的关联性。

在当今强调竞争优势的经济环境中,如果不能把握精确性的专业竞争,不根据各个专业性的概率指标与企业各种资源进行整体的科学组合,就无法使资源配置得到有效利用,资源整合价值最大化就会成为一个泡影,实施数据化管理,培育企业的竞争优势就会成为一个空话。

一、明确数据化管理的基本要求

1、管理者重视数据化管理,是实施数据化管理的基本条件,管理者重视数据化,重视人的因素,确立人和数据的有效组合,充分利用数据的作用或功能,认知和使用数据的价值,调动人的积极性和主观能动性,才能构建数据化管理平台按照数据化要求开展相关工作。

2、认清数据与管理的关系。企业不重视数据管芦拦理,就无法认清数据与管理的关系。很多管理者会经常通过数据分析来比较管理效率差异的原因。如生产管理中,两个部门人员、设备、材料、时间等要素完全一致的情况下,但生产的效率不一样,我就可以通过生产流程中的数据分解,进行数据分析,就可确认是员工士气、还是员工熟练情况和或管理因素导致生产效率不同的原因。

3、采集的数据必须是真实可靠的。数据因人而存在,是从管理活动中得来。数据的采集方法和管理要有制度和流程规范,不能随心所欲,更不能估测和伪造数据。数据的真实性对企业的分析和决策非常重要。其真实性一方面要依靠人的道德行为来保证,另一方面制度的保障是不可缺少的。在双重要求下我们的数据采集才能有保障。

4、数据是连续性和系统性的。在管理活动中,数据采集不能时断时续。不能只采集某一个方面,否则影响数据的准确性和完整性,企业各业务单元或各部门可按照年度、季度、月度以及每周、每日来采集企业各方面管理和业务发生的数据,进行归纳和统计。

二、以目标管理为基础拓展数字化管理的空间

数据化管理是以财务管理和目标管理为基础,由内向外拓展的。企业在战略目标的指导下,将长期经营目标的所确定的数据向年度进行分解,年度向季度、月度分解,形成了一个金字塔式的数据链。企业各个职能部门围绕着这个时段核心数据设计自己的工作计划,确定自己正卖所要完成数量目标。这样的数据指标就成为管理和工作的中心。工作的所有结果是为完成数量目标进行的。

从目标管理的角度来看,更多的是财务数量指标,财务指标为核心数据是毋庸质疑的,但核心数据目标的完成是由其他数据支撑的。如:企业员工的满意度,客户的满意度,销售终端增长数量的速度,企业投入新技术开发的.费用,高技术人员占员工的比例等等诸多数量指标,都是用于支持财务数据目标实现的基础。因为很多工作都是依据这些数量指标进行分解,进行分析总结,进行改进和调整。

因此,我们在进行数据管理中,各个业务单元必须让数据化向企业陪清胡管理的每一个角落延伸,使其在管理流程、标准及各个模块都有数据量化的清晰足迹。这样我们围绕着数据进行工作,工作效率和效果将有更多的保障。

三、数据化运用管理必须与制度化、流程化、图表化的连接

在我们很多企业,数据化管理主要就是财务数据,和其他方面看起来似乎没有关系,实际在管理运用上,离开制度化和流程化,数据化管理就没有根基,无法进行有效管理。

数据化管理讲究的是系统分析,科学评估。

只有深刻了解其过程的每个环节及其特点,确定出标准、流程,才能够制定出科学的决策与管理办法。如生产管理中,管理者选择合适且技术熟练的工人,进行工时、动作、材料研究,在试验过程中把工人的每一项动作、每一道工序、每一种材料所使用的数据都准确记录下来,就可得出完成该项工作所需要的总时间、总材料,据此定出一个工人“合理的时、日、月工作量和材料消耗量”。并将规程和标准的操作流程编写成书面材料,按照此教育训练员工。

通过制度化的管理要求,长期不懈的执行,这样数据化在制度化的基础上与流程化、标准化连接起来。就有一个基本保障。如果同时就生产中的各个要素进行整理成规范的表格,按照规范进行填写,并规定统计、分析、上报时间,这就在生产管理中就形成数据化管理的基础。如这样的管理长期坚持,不断修正和完善,长此以往累积成企业一整套规范运作的规程与习惯,同样也可构成企业独特的核心优势。

四、必须为数据化管理的设计载体

企业都会每天产生大量的数据,如生产数据、库存数据、财务数据、产品数据,销售数据等。但其必须有一个合适的载体进行运转,使其能产生有效价值,这就需要我们设计一个载体——专业化的图表(或表单)或专业的管理软件。这样我们一方面可运用图表等工具进行整理分析,一方面可借助计算机信息软件技术进行有效快捷的管理活动,但现在许多中小企业在粗放式管理阶段还无法进行计算机软件技术的应用。因此,我们就图表工具的应用进行简要的阐述。

表单设计从非专业角度可以讲,咨询公司顾问更多使用的数据分析工具。我们管理者更多的使用的是统计工具。这就我们从财务管理和统计管理方面设计各种表格。进行归纳和总结。

企业在进行管理图表或表单设计上,必须根据自身的具体情况,设计合理和完善的表。如:日常营业表单、各类费用表单、各类经营管理表单、人力资源相关管理表单等各种表单,并将表单收集的数据按部门分、按级别分、按要求分、按经营分、按时间分等进行分类。设计好编号、类别,等级、审核、制表、抄送等相关信息。将这些信息按照标准的流程进行填写、审核、分析和管理,以便使管理活动更加富有成效。

特别是产供销一体化的企业,管理活动复杂,表单众多,在没有管理软件应用支持的情况下,这就需要管理者对一些“共性表”进行合并和筛检,对“个性表”进行优化,尽可能使表单管理简要化,一些繁杂可有可无的表单需要及时整理处置,以减少表单管理的复杂性。在进行表单等工具的设计和管理上,我们以电脑操作系统为最基础的工具,它的许多基本功能就可实现和掌握数据化管理的使用工具。

当然,如企业条件许可,也可引进管理软件的进行应用,来提高管理效率。用图表或计算机进行数据积累、数据分析、建立相关模块,同时确立分析方法、构建数学模型、设计应用系统、提供决策支持等。使用各种方法挖掘数据应用技术,管理效率会得到进一步的提升。

关于数据管理和数据管理岗位职责的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

相关阅读

  • 关于org.json.jsonobject;的信息

    关于org.json.jsonobject;的信息

    简介org.json.JSONObject 是 Java 中一个轻量级的 JSON 对象实现,它提供了处理 JSON 数据的方便方法。它是 org.json 库的一部分,该库提供了处理 JSON 文档的全面工具集。多级标题JSONObjec...

    2024.05.20 04:01:13作者:intanet.cnTags:org.json.jsonobject
  • 包含request.json的词条

    包含request.json的词条

    简介`request.json` 是一个 JavaScript 对象,表示对服务器发出的 HTTP 请求。它定义了请求的各种属性,包括方法、URL、标头和正文。`request.json` 通常用于测试 HTTP 端点,因为它允许开发人员轻...

    2024.05.19 19:35:50作者:intanet.cnTags:request.json
  • 包含mysqlcoalesce的词条

    包含mysqlcoalesce的词条

    简介MySQL COALESCE() 函数用于检索一组表达式中第一个非 NULL 值,如果所有表达式都为 NULL,则返回指定的默认值。多级标题用途COALESCE() 函数主要用于处理具有缺失值或 NULL 值的数据,它允许您指定一个默认...

    2024.05.17 00:35:58作者:intanet.cnTags:mysqlcoalesce
  • mongodb6(MongoDB60跟那个版本ubuntu兼容)

    mongodb6(MongoDB60跟那个版本ubuntu兼容)

    简介MongoDB 6 是 MongoDB 广泛流行的 NoSQL 数据库的最新版本,旨在提供增强的性能、可扩展性和易用性。它包含众多新功能和改进,可帮助组织提高应用程序的敏捷性、可靠性和效率。多级标题性能提升 多文档事务 (MTX): M...

    2024.05.16 04:35:08作者:intanet.cnTags:mongodb6
  • hivedatediff的简单介绍

    hivedatediff的简单介绍

    标题:深入了解hivedatediff函数:简介、多级标题和内容详细说明## 1. 简介在大数据领域中,数据分析和处理是至关重要的。Hive是一种常用的数据仓库解决方案,它提供了SQL类似的查询语言,用于分析大规模数据集。在Hive中,hi...

    2024.05.15 06:02:44作者:intanet.cnTags:hivedatediff
  • sqlserver%(sqlserver密码忘记了怎么办)

    sqlserver%(sqlserver密码忘记了怎么办)

    简介SQL Server % 是 Microsoft SQL Server 中的一个操作符,用于执行取余运算。它计算两个表达式的余数,并将结果作为整数返回。多级标题语法``` expression1 % expression2 ```其中:...

    2024.05.15 04:36:30作者:intanet.cnTags:sqlserver%
  • sql的%(sql的注释符号)

    sql的%(sql的注释符号)

    简介SQL 中的 % 是一个通配符,用于匹配任意数量的字符。它可以与 LIKE 运算符一起使用来查找与给定模式匹配的行。多级标题 LIKE 运算符 通配符的使用 示例查询LIKE 运算符LIKE 运算符将指定的模式与列值进行比较。模式可...

    2024.05.15 03:53:02作者:intanet.cnTags:sql的%
  • 关于redisspop的信息

    关于redisspop的信息

    ## Redis 简介Redis(Remote Dictionary Server)是一个开源的,内存中键值存储数据库。它以其高性能、灵活性以及支持各种数据结构而闻名。## 多级标题### RediSearchRediSearch 是 Re...

    2024.05.14 22:02:31作者:intanet.cnTags:redisspop