逻辑回归(逻辑回归模型)

本篇文章给大家谈谈逻辑回归,以及逻辑回归模型对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

逻辑回归解决的是什么问题

逻辑回归原理的基本概念

1.什么是逻辑回归?

Logistic回归是这样一个过程:面对一个回归或分类问题,建立代价函数,然后通过最优化方法迭代求解最优的模型参数,然后对我们求解的模型的质量进行检验和验证。

Logistic回归其实是一种分类方法,虽肢模然名字叫“回归”。主要用于两个分类问题(即只有两个输出,分别代表两个类别)。

在回归模型中,Y是一个定性变量,如y=0或1。logistic方法主要用于研究某些事件发生的概率。

2.逻辑回归的优点和缺点

优势:

1)速度快,适用于二分类问题。

2)简单易懂,直接看到每个特征的权重

3)模型可以容易地更新以吸收新数据。

缺点:

对数据和场景的适应性有限,不如决策树算法携饥激强。

3.逻辑回归和多元线性回归的区别

逻辑回归和多元线性回归其实有很多共同点。最大的区别是它们的因变量不同,而其他的基本相同。因此,这两个回归可以属于同一个家族,即广义线性模型。

这个家族中的模型除了因变量不同之外,在形式上基本相似。这个家族中的模型除了因变量不同之外,在形式上基本相似。

如果是连续的,就是多元线性回归。

如果是二项分布,就是Logistic回归。

如果是泊松分布,就是泊松回归。

如果是负二项分布,就是负二项回归。

4.逻辑回归的使用

寻找危险因素:寻找某种疾病的危险因素等。;

预测:根据模型,预测不同自变量下某种疾病或情况发生的概率;

辨别:其实和预测差不多。也是基于模型来判断某人属于某种疾病或情况的概率,也就是看这个人属于某种疾病的可能性有辩袜多大。

5.回归的一般步骤

寻找H函数(即预测函数)

j函数(损失函数)

尝试最小化J函数,得到回归参数(θ)。

6.构造预测函数h(x)

1)逻辑函数(或Sigmoid函数),其函数形式为:

_

_

对于线性边界的情况,边界形式如下:

_

训练数据是一个向量。

_

最佳参数

_

预测函数是:

_

函数h(x)的值具有特殊的含义,它表示结果为1的概率。因此,对于输入x,将结果分类到类别1和类别0的概率是:

p(y = 1│x;θ)=h_θ (x)

p(y = 0│x;θ)=1-h_θ (x)

7.构造损失函数J(m个样本,每个样本具有N个特征)

代价函数和J函数如下,基于极大似然估计导出。

_

8.损失函数的详细推导过程

1)找到成本函数

概率被组合并写成:

_

回答于 2022-09-06

线性回归和逻辑回归的区别

线性回归和逻辑回归的区别:性质不同、应用不同。

一、性质不同。

1、逻辑回归:是一种广义的线性回归分析模型。

2、线性回归:利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。

二、应用不同。

1、逻辑回归:常用于数据挖掘,疾病自动诊断,经济预测等领域。

2、线性回归:常运用于数学、金融、趋势线、经济学等领域。

线性回归要求因变量必须是连续性数据变量;逻辑回归要求因变量缓洞必须是分类变量,二分类或者多分类的;比如要分析性别、年龄、身高、饮食习惯对于体重的影响,如果这个体重是属于实际的重量,是连续性的数据变量,这个时候就用线性回归来做;如果将体重分类,分成了高、中、低这三种体重类型作为因变量,则采用logistic回归。

线性回归的特点:

线性回归是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。其表达形式为y=w'扒哪行x+e,e为误差服从均值为0的正态分布。回归分析中有多个自变量:这里春哗有一个原则问题,这些自变量的重要性,究竟谁是最重要,谁是比较重要,谁是不重要。所以,spss线性回归有一个和逐步判别分析的等价的设置。

回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

[img]

怎样正确理解逻辑回归(logistic regression)?

逻辑回归通常用于解决分类问题灶磨,“分类”是应用逻辑回归的目的和结果,但中间过程依旧是“回归”。

逻辑回归是用来做分类算法的,大家都熟悉线性回归,一般形式是Y=aX+b,y的取值范围是[-∞, +∞],有这么多取值,怎么进行分类呢?不用担心,伟大的数学家已经为我们找到了一个方法。

也就是把Y的结果带入一个非线性变换的Sigmoid函数中,即可得到[0,1]之间取值范围的数S,S可以把它看成是一个概率值,如果我们设置概率阈值为0.5,那么S大于0.5可以看成是正样本,小于0.5看成是负样本,就可以进行分类函数中t无论取什么值,其结果都在[0,-1]的区间内,回想一下,一个分类问题就有两种答案,一种是“是”,一种是“否”,那0对应着“否”,1对应着“是”,那又有人问了,你这不是[0,1]的区间吗,怎么会只有0和1呢?这个问题问得好,我们假设分类的阈值是0.5,那么超过0.5的归为1分类,低于0.5的归为0分类,阈值是可以自己设定的。

函数中t无论取什橡辩搭么值,其结果都在[0,-1]的区间内,回想一下,一个分类问题就有两种答案,一种是“是”,一种是“否”,那0对应着“否”,1对应着“是”,那又有人问了,你这不是[0,1]的区间吗,怎么会只有0和1呢?这个问题问得好,我们假设分类的阈值是0.5,那么超过0.5的归为1分类,低于0.5的归为0分类,阈值是可以自己设定的。

好了,接下来我们把aX+b带入t中就得到了梁拿我们的逻辑回归的一般模型方程:

结果P也可以理解为概率,换句话说概率大于0.5的属于1分类,概率小于0.5的属于0分类,这就达到了分类的目的。

逻辑回归有什么优点

LR能以概率的形式输出结果,而非只是0,1判定。

LR的可解释性强,可控度高(你要给老板讲的嘛…)。

训练快,feature engineering之后效果赞。

因为结果是概率,可以做ranking model。

逻辑回归有哪些应用

CTR预估/推荐系统的learning to rank/各种分类场景。

某搜索引擎厂的广告CTR预估基线版是LR。

某电商搜索排序/广告CTR预估基线版是LR。

某电商的购物搭配推荐用了大量LR。

某现在一天广告赚1000w+的新闻app排序基线是LR。

关于逻辑回归和逻辑回归模型的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

标签列表