卷积神经网络模型(卷积神经网络模型有哪些)
本篇文章给大家谈谈卷积神经网络模型,以及卷积神经网络模型有哪些对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
卷积神经网络
关于花书中卷积网络的笔记记录于 。
卷积神经网络(Convolutional Neural Network,CNN或ConvNet)是一种具有 局部连接、权重共享 等特性的深层前馈神经网络。卷积神经网络是受生物学上感受野的机制而提出。 感受野(Receptive Field) 主要是指听觉、视觉等神经系统中一些神经元的特性,即 神经元只接受其所支配的刺激区域内的信号 。
卷积神经网络最早是主要用来处理图像信息。如果用全连接前馈网络来处理图像时,会存在以下两个问题:
目前的卷积神经网络一般是由卷积层、汇聚层和全连接层交叉堆叠而成的前馈神经网络,使用反向传播算法进行训练。 卷积神经网络有三个结构上的特性:局部连接,权重共享以及汇聚 。这些特性使卷积神经网络具有一定程度上的平移、缩放和旋转不变性。
卷积(Convolution)是分析数学中一种重要的运算。在信号处理或图像处理中,经常使用一维物毕旦或二维卷积。
一维卷积经常用在信号处理中,用于计算信号的延迟累积。假设一个信号发生器每个时刻t 产生一个信号 ,其信息的衰减率为 ,即在 个时间步长后,信息为原来的 倍。假设 ,那么在时刻t收到的信号 为当前时刻产生的信息和以前时刻延迟信息的叠加:
我们把 称为 滤波器(Filter)或卷积核(Convolution Kernel) 。假设滤波器长度为 ,它和一个信号序列 的卷积为:
信号序列 和滤波器 的卷积定义为:
一般情况下滤波器的长度 远小于信号序列长度 ,下图给出一个一维卷积示例,滤波器为 :
二维卷积经常用在图像处理中。因为图像为一个两维结构,所以需要将一维卷积进行扩展。给定一个图像 和滤波器 ,其卷积为:
下图给出一个二维卷积示例:
注意这里的卷积运算并不是在图像中框定卷积核大小的方框并将各像素值与卷积核各个元素相乘并加和,而是先把卷积核旋转180度,再做上述运算。
在图像处理中,卷积经常作为特征提取的有效方法。一幅图像在经过卷积操作后得到结果称为 特征映射(Feature Map) 。
最上面的滤波器是常用的高斯滤波器,可以用来对图像进行 平滑去噪 ;中间和最下面的过滤器可以用来 提取边缘特征 。
在机器学习和图像处理领域,卷积的主要功能是在一个图像(或某种特征)上滑动一个卷积核(即滤波器),通过卷积操作得到一组新的特征。在计算卷积的过程中,需要进行卷积核翻转(即上文提到的旋转180度)。 在具体实现上,一般会以互相关操作来代替卷积,从而会减少一些不必要的操作或开销。
互相关(Cross-Correlation)是一个衡量两个序列相关性的函数,通常是用滑动窗口的点积计算来实现 。给定一个图像 和卷积核 ,它们的互相关为:
互相关和卷积的区别仅在于卷积核是否进行翻转。因此互相关也可以称为不翻转卷积 。当卷积罩扰核是可学习的参数时,卷积和互相关是等价的。因此,为了实现上(或描述上)的方便起见,我们用互相关来代替卷积。事实上,很多深度学习工具中卷积操作其实都是互相关操作。
在卷积的标准定义基础上,还可以引入滤波器的 滑动步长 和 零填充 来增加卷积多样性,更灵活地进行特征抽取。
滤波器的步长(Stride)是指滤波器在滑动时的时间间隔。
零填充(Zero Padding)是在输入向量两端进行补零。
假设卷积层的输入神经元个数为 ,卷积大小为 ,步长为 ,神经元两端各填补 个零,那么该卷数兆积层的神经元数量为 。
一般常用的卷积有以下三类:
因为卷积网络的训练也是基于反向传播算法,因此我们重点关注卷积的导数性质:
假设 。
, , 。函数 为一个标量函数。
则由 有:
可以看出, 关于 的偏导数为 和 的卷积 :
同理得到:
当 或 时, ,即相当于对 进行 的零填充。从而 关于 的偏导数为 和 的宽卷积 。
用互相关的“卷积”表示,即为(注意 宽卷积运算具有交换性性质 ):
在全连接前馈神经网络中,如果第 层有 个神经元,第 层有 个神经元,连接边有 个,也就是权重矩阵有 个参数。当 和 都很大时,权重矩阵的参数非常多,训练的效率会非常低。
如果采用卷积来代替全连接,第 层的净输入 为第 层活性值 和滤波器 的卷积,即:
根据卷积的定义,卷积层有两个很重要的性质:
由于局部连接和权重共享,卷积层的参数只有一个m维的权重 和1维的偏置 ,共 个参数。参数个数和神经元的数量无关。此外,第 层的神经元个数不是任意选择的,而是满足 。
卷积层的作用是提取一个局部区域的特征,不同的卷积核相当于不同的特征提取器。
特征映射(Feature Map)为一幅图像(或其它特征映射)在经过卷积提取到的特征,每个特征映射可以作为一类抽取的图像特征。 为了提高卷积网络的表示能力,可以在每一层使用多个不同的特征映射,以更好地表示图像的特征。
在输入层,特征映射就是图像本身。如果是灰度图像,就是有一个特征映射,深度 ;如果是彩色图像,分别有RGB三个颜色通道的特征映射,深度 。
不失一般性,假设一个卷积层的结构如下:
为了计算输出特征映射 ,用卷积核 分别对输入特征映射 进行卷积,然后将卷积结果相加,并加上一个标量偏置 得到卷积层的净输入 再经过非线性激活函数后得到输出特征映射 。
在输入为 ,输出为 的卷积层中,每个输出特征映射都需要 个滤波器以及一个偏置。假设每个滤波器的大小为 ,那么共需要 个参数。
汇聚层(Pooling Layer)也叫子采样层(Subsampling Layer),其作用是进行特征选择,降低特征数量,并从而减少参数数量。
常用的汇聚函数有两种:
其中 为区域 内每个神经元的激活值。
可以看出,汇聚层不但可以有效地减少神经元的数量,还可以使得网络对一些小的局部形态改变保持不变性,并拥有更大的感受野。
典型的汇聚层是将每个特征映射划分为 大小的不重叠区域,然后使用最大汇聚的方式进行下采样。汇聚层也可以看做是一个特殊的卷积层,卷积核大小为 ,步长为 ,卷积核为 函数或 函数。过大的采样区域会急剧减少神经元的数量,会造成过多的信息损失。
一个典型的卷积网络是由卷积层、汇聚层、全连接层交叉堆叠而成。
目前常用卷积网络结构如图所示,一个卷积块为连续 个卷积层和 个汇聚层( 通常设置为 , 为 或 )。一个卷积网络中可以堆叠 个连续的卷积块,然后在后面接着 个全连接层( 的取值区间比较大,比如 或者更大; 一般为 )。
目前,整个网络结构 趋向于使用更小的卷积核(比如 和 )以及更深的结构(比如层数大于50) 。此外,由于卷积的操作性越来越灵活(比如不同的步长),汇聚层的作用变得也越来越小,因此目前比较流行的卷积网络中, 汇聚层的比例也逐渐降低,趋向于全卷积网络 。
在全连接前馈神经网络中,梯度主要通过每一层的误差项 进行反向传播,并进一步计算每层参数的梯度。在卷积神经网络中,主要有两种不同功能的神经层:卷积层和汇聚层。而参数为卷积核以及偏置,因此 只需要计算卷积层中参数的梯度。
不失一般性,第 层为卷积层,第 层的输入特征映射为 ,通过卷积计算得到第 层的特征映射净输入 ,第 层的第 个特征映射净输入
由 得:
同理可得,损失函数关于第 层的第 个偏置 的偏导数为:
在卷积网络中,每层参数的梯度依赖其所在层的误差项 。
卷积层和汇聚层中,误差项的计算有所不同,因此我们分别计算其误差项。
第 层的第 个特征映射的误差项 的具体推导过程如下:
其中 为第 层使用的激活函数导数, 为上采样函数(upsampling),与汇聚层中使用的下采样操作刚好相反。如果下采样是最大汇聚(max pooling),误差项 中每个值会直接传递到上一层对应区域中的最大值所对应的神经元,该区域中其它神经元的误差项的都设为0。如果下采样是平均汇聚(meanpooling),误差项 中每个值会被平均分配到上一层对应区域中的所有神经元上。
第 层的第 个特征映射的误差项 的具体推导过程如下:
其中 为宽卷积。
LeNet-5虽然提出的时间比较早,但是是一个非常成功的神经网络模型。基于LeNet-5 的手写数字识别系统在90年代被美国很多银行使用,用来识别支票上面的手写数字。LeNet-5 的网络结构如图:
不计输入层,LeNet-5共有7层,每一层的结构为:
AlexNet是第一个现代深度卷积网络模型,其首次使用了很多现代深度卷积网络的一些技术方法,比如采用了ReLU作为非线性激活函数,使用Dropout防止过拟合,使用数据增强来提高模型准确率等。AlexNet 赢得了2012 年ImageNet 图像分类竞赛的冠军。
AlexNet的结构如图,包括5个卷积层、3个全连接层和1个softmax层。因为网络规模超出了当时的单个GPU的内存限制,AlexNet 将网络拆为两半,分别放在两个GPU上,GPU间只在某些层(比如第3层)进行通讯。
AlexNet的具体结构如下:
在卷积网络中,如何设置卷积层的卷积核大小是一个十分关键的问题。 在Inception网络中,一个卷积层包含多个不同大小的卷积操作,称为Inception模块。Inception网络是由有多个inception模块和少量的汇聚层堆叠而成 。
v1版本的Inception模块,采用了4组平行的特征抽取方式,分别为1×1、3× 3、5×5的卷积和3×3的最大汇聚。同时,为了提高计算效率,减少参数数量,Inception模块在进行3×3、5×5的卷积之前、3×3的最大汇聚之后,进行一次1×1的卷积来减少特征映射的深度。如果输入特征映射之间存在冗余信息, 1×1的卷积相当于先进行一次特征抽取 。
[img]深度学习之卷积神经网络经典模型
LeNet-5模型 在CNN的应用中,文字识别系统所用的LeNet-5模型是非常经典的模型。LeNet-5模型是1998年,Yann LeCun教授提出的,它是第一个成功大规模应用在手写数字识别问题的卷积神经网络,在MNIST数据集中的正确率可以高达99.2%。
下面详细介绍一下LeNet-5模型工作的原理。
LeNet-5模型一共有7层,每层包含众多参数,也就是卷积神经网络中的参数。虽然层数只有7层,这在如今庞大的神经网络中可是说是非常少的了,但是包含了卷积层,池化层,全连接层,可谓麻雀虽小五脏俱全了。为了方便,我们把卷积层称为C层,下采样层叫做下采样层。
首先,输入层输入原始图像,原始图像被处理成32×32个像素点的值。然后,后面的隐层计在卷积和子抽样之间交替进行。C1层是卷积层,包含了六个特征图。每个映射也就是28x28个神经元。卷积核可以是5x5的十字形,这28×28个神经元共享卷积核权值参数,通过卷积运算,原始掘樱信号特征增强,同时也降低了噪声,当卷积核不同时,提取到图像中的特征不同;C2层是一个池化层,池化层的功能在上文已经介绍过了,它将局部像素值平均化来实现子抽样。
池化层包含了六个特征映射,每个映射的像素值为14x14,这样的池化层非常重要,可以在一定程度上保证网络的特征被提取,同时运算量也大大降低,减少了网络结构过拟合的风险。因为卷积层与池化层是交替出现的,所以隐藏层的第三层又是一个卷积层,第二个卷积层由16个特征映射构成,每个特派散销征映射用于加权和计算的卷积核为10x10的。第四个隐藏层,也就是第二个池化层同样包含16个特征映射,每个特征映射中所用的卷积核是5x5的。第五个隐藏层是用5x5的卷积核进行运算,包含了120个神经元,也是这个网络中卷积运算的最后一层。
之后的第六层便是全连接层,包含了84个特征图。全连接层中对输入进行点积之后加入偏置,然后经过一个激活函数传输给输出层的神经元。最后一层,也就是第七层,为了得到输出向量,设置了十个神经元来进行分类,相当于输出一个包含十个元素的一维数组,向量中的十个元素即0到9。
AlexNet模型
AlexNet简介
2012年Imagenet图像识别大赛中,Alext提出的alexnet网络模型一鸣惊人,引爆了神经网络的应用热潮,并且赢得了2012届图像识别大赛的冠军,这也使得卷积神经网络真正意义上成为图像处理上的核心算法。上文介绍的LeNet-5出现在上个世纪,虽然是经典,但是迫于种种复杂的现实场景限制,只能在一些领域应用。不过,随着SVM等手工设计的特征的飞速发展,LeNet-5并没有形成很大的应用状况。随着ReLU与dropout的提出,以及GPU带来算力突破和互联网时代大数据的爆发,卷积神经网络带来历史的突破,AlexNet的提出让深度学习走上人工智能的最前端。
图像预处理
AlexNet的训练数据采用ImageNet的子集中的ILSVRC2010数据集,包含了1000类,共1.2百万的训练图像,50000张验证集,150000张测试集。在进行网络训练之前我们要对数据集图片进行预处理。首先我们要将不同分辨率的图片全部变成256x256规格的图像,变换方法是将图片的短边缩放到 256像素值,然后截取长边的中间位置的256个像素值,得到256x256大小的图像。除了对图片大小进行预处理,还需要对图片减均值,一般图像均是由RGB三原色构成,均值按RGB三分量分别求得,由此可以更加突出图片的特征,更方便后面的计算。
此外,对了保证训练的效果,我们仍需对训练数据进行更为严苛的处理。在256x256大小的图像中,截取227x227大小的图像,在此之后对图片取镜像,这样就使得原始数据增加了(256-224)x(256-224)x2= 2048倍。最后对RGB空间做PCA,然后对主成分做(0,0.1)的高斯扰动,结果使错误率下降1%。对测试数据而言,抽取以图像4个角落的大小为224224的图像,中心的224224大小的图像以及它们的镜像翻转图像,这样便可以获得10张图像,我们便可以利用softmax进行预测,对所有预测取平均作为最终的分类结果。
ReLU激活函数
之前我们提到常用的非线性的激活函数是sigmoid,它能够把输入的连续实值尘游全部确定在0和1之间。但是这带来一个问题,当一个负数的绝对值很大时,那么输出就是0;如果是绝对值非常大的正数,输出就是1。这就会出现饱和的现象,饱和现象中神经元的梯度会变得特别小,这样必然会使得网络的学习更加困难。此外,sigmoid的output的值并不是0为均值,因为这会导致上一层输出的非0均值信号会直接输入到后一层的神经元上。所以AlexNet模型提出了ReLU函数,公式:f(x)=max(0,x)f(x)=max(0,x)。
用ReLU代替了Sigmoid,发现使用 ReLU 得到的SGD的收敛速度会比 sigmoid快很多,这成了AlexNet模型的优势之一。
Dropout
AlexNet模型提出了一个有效的模型组合方式,相比于单模型,只需要多花费一倍的时间,这种方式就做Dropout。在整个神经网络中,随机选取一半的神经元将它们的输出变成0。这种方式使得网络关闭了部分神经元,减少了过拟合现象。同时训练的迭代次数也得以增加。当时一个GTX580 GPU只有3GB内存,这使得大规模的运算成为不可能。但是,随着硬件水平的发展,当时的GPU已经可以实现并行计算了,并行计算之后两块GPU可以互相通信传输数据,这样的方式充分利用了GPU资源,所以模型设计利用两个GPU并行运算,大大提高了运算效率。
模型分析
AlexNet模型共有8层结构,其中前5层为卷积层,其中前两个卷积层和第五个卷积层有池化层,其他卷积层没有。后面3层为全连接层,神经元约有六十五万个,所需要训练的参数约六千万个。
图片预处理过后,进过第一个卷积层C1之后,原始的图像也就变成了55x55的像素大小,此时一共有96个通道。模型分为上下两块是为了方便GPU运算,48作为通道数目更加适合GPU的并行运算。上图的模型里把48层直接变成了一个面,这使得模型看上去更像一个立方体,大小为55x55x48。在后面的第二个卷积层C2中,卷积核的尺寸为5x5x48,由此再次进行卷积运算。在C1,C2卷积层的卷积运算之后,都会有一个池化层,使得提取特征之后的特征图像素值大大减小,方便了运算,也使得特征更加明显。而第三层的卷积层C3又是更加特殊了。第三层卷积层做了通道的合并,将之前两个通道的数据再次合并起来,这是一种串接操作。第三层后,由于串接,通道数变成256。全卷积的卷积核尺寸也就变成了13×13×25613×13×256。一个有4096个这样尺寸的卷积核分别对输入图像做4096次的全卷积操作,最后的结果就是一个列向量,一共有4096个数。这也就是最后的输出,但是AlexNet最终是要分1000个类,所以通过第八层,也就是全连接的第三层,由此得到1000个类输出。
Alexnet网络中各个层发挥了不同的作用,ReLU,多个CPU是为了提高训练速度,重叠pool池化是为了提高精度,且不容易产生过拟合,局部归一化响应是为了提高精度,而数据增益与dropout是为了减少过拟合。
VGG net
在ILSVRC-2014中,牛津大学的视觉几何组提出的VGGNet模型在定位任务第一名和分类任务第一名[[i]]。如今在计算机视觉领域,卷积神经网络的良好效果深得广大开发者的喜欢,并且上文提到的AlexNet模型拥有更好的效果,所以广大从业者学习者试图将其改进以获得更好地效果。而后来很多人经过验证认为,AlexNet模型中所谓的局部归一化响应浪费了计算资源,但是对性能却没有很大的提升。VGG的实质是AlexNet结构的增强版,它侧重强调卷积神经网络设计中的深度。将卷积层的深度提升到了19层,并且在当年的ImageNet大赛中的定位问题中获得了第一名的好成绩。整个网络向人们证明了我们是可以用很小的卷积核取得很好地效果,前提是我们要把网络的层数加深,这也论证了我们要想提高整个神经网络的模型效果,一个较为有效的方法便是将它的深度加深,虽然计算量会大大提高,但是整个复杂度也上升了,更能解决复杂的问题。虽然VGG网络已经诞生好几年了,但是很多其他网络上效果并不是很好地情况下,VGG有时候还能够发挥它的优势,让人有意想不到的收获。
与AlexNet网络非常类似,VGG共有五个卷积层,并且每个卷积层之后都有一个池化层。当时在ImageNet大赛中,作者分别尝试了六种网络结构。这六种结构大致相同,只是层数不同,少则11层,多达19层。网络结构的输入是大小为224*224的RGB图像,最终将分类结果输出。当然,在输入网络时,图片要进行预处理。
VGG网络相比AlexNet网络,在网络的深度以及宽度上做了一定的拓展,具体的卷积运算还是与AlexNet网络类似。我们主要说明一下VGG网络所做的改进。第一点,由于很多研究者发现归一化层的效果并不是很好,而且占用了大量的计算资源,所以在VGG网络中作者取消了归一化层;第二点,VGG网络用了更小的3x3的卷积核,而两个连续的3x3的卷积核相当于5x5的感受野,由此类推,三个3x3的连续的卷积核也就相当于7x7的感受野。这样的变化使得参数量更小,节省了计算资源,将资源留给后面的更深层次的网络。第三点是VGG网络中的池化层特征池化核改为了2x2,而在AlexNet网络中池化核为3x3。这三点改进无疑是使得整个参数运算量下降,这样我们在有限的计算平台上能够获得更多的资源留给更深层的网络。由于层数较多,卷积核比较小,这样使得整个网络的特征提取效果很好。其实由于VGG的层数较多,所以计算量还是相当大的,卷积层比较多成了它最显著的特点。另外,VGG网络的拓展性能比较突出,结构比较简洁,所以它的迁移性能比较好,迁移到其他数据集的时候泛化性能好。到现在为止,VGG网络还经常被用来提出特征。所以当现在很多较新的模型效果不好时,使用VGG可能会解决这些问题。
GoogleNet
谷歌于2014年Imagenet挑战赛(ILSVRC14)凭借GoogleNet再次斩获第一名。这个通过增加了神经网络的深度和宽度获得了更好地效果,在此过程中保证了计算资源的不变。这个网络论证了加大深度,宽度以及训练数据的增加是现有深度学习获得更好效果的主要方式。但是增加尺寸可能会带来过拟合的问题,因为深度与宽度的加深必然会带来过量的参数。此外,增加网络尺寸也带来了对计算资源侵占过多的缺点。为了保证计算资源充分利用的前提下去提高整个模型的性能,作者使用了Inception模型,这个模型在下图中有展示,可以看出这个有点像金字塔的模型在宽度上使用并联的不同大小的卷积核,增加了卷积核的输出宽度。因为使用了较大尺度的卷积核增加了参数。使用了1*1的卷积核就是为了使得参数的数量最少。
Inception模块
上图表格为网络分析图,第一行为卷积层,输入为224×224×3 ,卷积核为7x7,步长为2,padding为3,输出的维度为112×112×64,这里面的7x7卷积使用了 7×1 然后 1×7 的方式,这样便有(7+7)×64×3=2,688个参数。第二行为池化层,卷积核为3×33×3,滑动步长为2,padding为 1 ,输出维度:56×56×64,计算方式:1/2×(112+2×1?3+1)=56。第三行,第四行与第一行,第二行类似。第 5 行 Inception module中分为4条支线,输入均为上层产生的 28×28×192 结果:第 1 部分,1×1 卷积层,输出大小为28×28×64;第 2 部分,先1×1卷积层,输出大小为28×28×96,作为输入进行3×3卷积层,输出大小为28×28×128;第 3部分,先1×1卷积层,输出大小为28×28×32,作为输入进行3×3卷积层,输出大小为28×28×32;而第3 部分3×3的池化层,输出大小为输出大小为28×28×32。第5行的Inception module会对上面是个结果的输出结果并联,由此增加网络宽度。
ResNet
2015年ImageNet大赛中,MSRA何凯明团队的ResidualNetworks力压群雄,在ImageNet的诸多领域的比赛中上均获得了第一名的好成绩,而且这篇关于ResNet的论文Deep Residual Learning for Image Recognition也获得了CVPR2016的最佳论文,实至而名归。
上文介绍了的VGG以及GoogleNet都是增加了卷积神经网络的深度来获得更好效果,也让人们明白了网络的深度与广度决定了训练的效果。但是,与此同时,宽度与深度加深的同时,效果实际会慢慢变差。也就是说模型的层次加深,错误率提高了。模型的深度加深,以一定的错误率来换取学习能力的增强。但是深层的神经网络模型牺牲了大量的计算资源,学习能力提高的同时不应当产生比浅层神经网络更高的错误率。这个现象的产生主要是因为随着神经网络的层数增加,梯度消失的现象就越来越明显。所以为了解决这个问题,作者提出了一个深度残差网络的结构Residual:
上图就是残差网络的基本结构,可以看出其实是增加了一个恒等映射,将原本的变换函数H(x)转换成了F(x)+x。示意图中可以很明显看出来整个网络的变化,这样网络不再是简单的堆叠结构,这样的话便很好地解决了由于网络层数增加而带来的梯度原来越不明显的问题。所以这时候网络可以做得很深,到目前为止,网络的层数都可以上千层,而能够保证很好地效果。并且,这样的简单叠加并没有给网络增加额外的参数跟计算量,同时也提高了网络训练的效果与效率。
在比赛中,为了证明自己观点是正确的,作者控制变量地设计几个实验。首先作者构建了两个plain网络,这两个网络分别为18层跟34层,随后作者又设计了两个残差网络,层数也是分别为18层和34层。然后对这四个模型进行控制变量的实验观察数据量的变化。下图便是实验结果。实验中,在plain网络上观测到明显的退化现象。实验结果也表明,在残差网络上,34层的效果明显要好于18层的效果,足以证明残差网络随着层数增加性能也是增加的。不仅如此,残差网络的在更深层的结构上收敛性能也有明显的提升,整个实验大为成功。
除此之外,作者还做了关于shortcut方式的实验,如果残差网络模块的输入输出维度不一致,我们如果要使维度统一,必须要对维数较少的进行増维。而增维的最好效果是用0来填充。不过实验数据显示三者差距很小,所以线性投影并不是特别需要。使用0来填充维度同时也保证了模型的复杂度控制在比较低的情况下。
随着实验的深入,作者又提出了更深的残差模块。这种模型减少了各个层的参数量,将资源留给更深层数的模型,在保证复杂度很低的情况下,模型也没有出现梯度消失很明显的情况,因此目前模型最高可达1202层,错误率仍然控制得很低。但是层数如此之多也带来了过拟合的现象,不过诸多研究者仍在改进之中,毕竟此时的ResNet已经相对于其他模型在性能上遥遥领先了。
残差网络的精髓便是shortcut。从一个角度来看,也可以解读为多种路径组合的一个网络。如下图:
ResNet可以做到很深,但是从上图中可以体会到,当网络很深,也就是层数很多时,数据传输的路径其实相对比较固定。我们似乎也可以将其理解为一个多人投票系统,大多数梯度都分布在论文中所谓的effective path上。
DenseNet
在Resnet模型之后,有人试图对ResNet模型进行改进,由此便诞生了ResNeXt模型。
这是对上面介绍的ResNet模型结合了GoogleNet中的inception模块思想,相比于Resnet来说更加有效。随后,诞生了DenseNet模型,它直接将所有的模块连接起来,整个模型更加简单粗暴。稠密相连成了它的主要特点。
我们将DenseNet与ResNet相比较:
从上图中可以看出,相比于ResNet,DenseNet参数量明显减少很多,效果也更加优越,只是DenseNet需要消耗更多的内存。
总结
上面介绍了卷积神经网络发展史上比较著名的一些模型,这些模型非常经典,也各有优势。在算力不断增强的现在,各种新的网络训练的效率以及效果也在逐渐提高。从收敛速度上看,VGGInceptionDenseNetResNet,从泛化能力来看,InceptionDenseNet=ResNetVGG,从运算量看来,InceptionDenseNet ResNetVGG,从内存开销来看,InceptionResNet DenseNetVGG。在本次研究中,我们对各个模型均进行了分析,但从效果来看,ResNet效果是最好的,优于Inception,优于VGG,所以我们第四章实验中主要采用谷歌的Inception模型,也就是GoogleNet。
怎样用python构建一个卷积神经网络模型
上周末利用python简单实现了一个卷积神经网络,只包含一个卷积层和一个maxpooling层,pooling层后面的多层神经网络采渣备用了softmax形式的输出。实验输入仍然采用MNIST图像使用10个拿睁feature map时,卷积和pooling的结果分别如下所示。
部分源码如下:
[python] view plain copy
#coding=utf-8
'''''
Created on 2014年11月30日
@author: Wangliaofan
'''
import numpy
import struct
import matplotlib.pyplot as plt
import math
import random
import copy
#test
from BasicMultilayerNeuralNetwork import BMNN2
def sigmoid(inX):
if 1.0+numpy.exp(-inX)== 0.0:
return 999999999.999999999
return 1.0/(1.0+numpy.exp(-inX))
def difsigmoid(inX):
return sigmoid(inX)*(1.0-sigmoid(inX))
def tangenth(inX):
return (1.0*math.exp(inX)-1.0*math.exp(-inX))/(1.0*math.exp(inX)+1.0*math.exp(-inX))
def cnn_conv(in_image, filter_map,B,type_func='sigmoid'):
#in_image[num,feature map,row,col]=in_image[Irow,Icol]
#features map[k filter,row,col]
#type_func['sigmoid','tangenth']
#out_feature[k filter,Irow-row+1,Icol-col+1]
shape_image=numpy.shape(in_image)#[row,col]
#print "shape_image"消梁岁,shape_image
shape_filter=numpy.shape(filter_map)#[k filter,row,col]
if shape_filter[1]shape_image[0] or shape_filter[2]shape_image[1]:
raise Exception
shape_out=(shape_filter[0],shape_image[0]-shape_filter[1]+1,shape_image[1]-shape_filter[2]+1)
out_feature=numpy.zeros(shape_out)
k,m,n=numpy.shape(out_feature)
for k_idx in range(0,k):
#rotate 180 to calculate conv
c_filter=numpy.rot90(filter_map[k_idx,:,:], 2)
for r_idx in range(0,m):
for c_idx in range(0,n):
#conv_temp=numpy.zeros((shape_filter[1],shape_filter[2]))
conv_temp=numpy.dot(in_image[r_idx:r_idx+shape_filter[1],c_idx:c_idx+shape_filter[2]],c_filter)
sum_temp=numpy.sum(conv_temp)
if type_func=='sigmoid':
out_feature[k_idx,r_idx,c_idx]=sigmoid(sum_temp+B[k_idx])
elif type_func=='tangenth':
out_feature[k_idx,r_idx,c_idx]=tangenth(sum_temp+B[k_idx])
else:
raise Exception
return out_feature
def cnn_maxpooling(out_feature,pooling_size=2,type_pooling="max"):
k,row,col=numpy.shape(out_feature)
max_index_Matirx=numpy.zeros((k,row,col))
out_row=int(numpy.floor(row/pooling_size))
out_col=int(numpy.floor(col/pooling_size))
out_pooling=numpy.zeros((k,out_row,out_col))
for k_idx in range(0,k):
for r_idx in range(0,out_row):
for c_idx in range(0,out_col):
temp_matrix=out_feature[k_idx,pooling_size*r_idx:pooling_size*r_idx+pooling_size,pooling_size*c_idx:pooling_size*c_idx+pooling_size]
out_pooling[k_idx,r_idx,c_idx]=numpy.amax(temp_matrix)
max_index=numpy.argmax(temp_matrix)
#print max_index
#print max_index/pooling_size,max_index%pooling_size
max_index_Matirx[k_idx,pooling_size*r_idx+max_index/pooling_size,pooling_size*c_idx+max_index%pooling_size]=1
return out_pooling,max_index_Matirx
def poolwithfunc(in_pooling,W,B,type_func='sigmoid'):
k,row,col=numpy.shape(in_pooling)
out_pooling=numpy.zeros((k,row,col))
for k_idx in range(0,k):
for r_idx in range(0,row):
for c_idx in range(0,col):
out_pooling[k_idx,r_idx,c_idx]=sigmoid(W[k_idx]*in_pooling[k_idx,r_idx,c_idx]+B[k_idx])
return out_pooling
#out_feature is the out put of conv
def backErrorfromPoolToConv(theta,max_index_Matirx,out_feature,pooling_size=2):
k1,row,col=numpy.shape(out_feature)
error_conv=numpy.zeros((k1,row,col))
k2,theta_row,theta_col=numpy.shape(theta)
if k1!=k2:
raise Exception
for idx_k in range(0,k1):
for idx_row in range( 0, row):
for idx_col in range( 0, col):
error_conv[idx_k,idx_row,idx_col]=\
max_index_Matirx[idx_k,idx_row,idx_col]*\
float(theta[idx_k,idx_row/pooling_size,idx_col/pooling_size])*\
difsigmoid(out_feature[idx_k,idx_row,idx_col])
return error_conv
def backErrorfromConvToInput(theta,inputImage):
k1,row,col=numpy.shape(theta)
#print "theta",k1,row,col
i_row,i_col=numpy.shape(inputImage)
if rowi_row or col i_col:
raise Exception
filter_row=i_row-row+1
filter_col=i_col-col+1
detaW=numpy.zeros((k1,filter_row,filter_col))
#the same with conv valid in matlab
for k_idx in range(0,k1):
for idx_row in range(0,filter_row):
for idx_col in range(0,filter_col):
subInputMatrix=inputImage[idx_row:idx_row+row,idx_col:idx_col+col]
#print "subInputMatrix",numpy.shape(subInputMatrix)
#rotate theta 180
#print numpy.shape(theta)
theta_rotate=numpy.rot90(theta[k_idx,:,:], 2)
#print "theta_rotate",theta_rotate
dotMatrix=numpy.dot(subInputMatrix,theta_rotate)
detaW[k_idx,idx_row,idx_col]=numpy.sum(dotMatrix)
detaB=numpy.zeros((k1,1))
for k_idx in range(0,k1):
detaB[k_idx]=numpy.sum(theta[k_idx,:,:])
return detaW,detaB
def loadMNISTimage(absFilePathandName,datanum=60000):
images=open(absFilePathandName,'rb')
buf=images.read()
index=0
magic, numImages , numRows , numColumns = struct.unpack_from('IIII' , buf , index)
print magic, numImages , numRows , numColumns
index += struct.calcsize('IIII')
if magic != 2051:
raise Exception
datasize=int(784*datanum)
datablock=""+str(datasize)+"B"
#nextmatrix=struct.unpack_from('47040000B' ,buf, index)
nextmatrix=struct.unpack_from(datablock ,buf, index)
nextmatrix=numpy.array(nextmatrix)/255.0
#nextmatrix=nextmatrix.reshape(numImages,numRows,numColumns)
#nextmatrix=nextmatrix.reshape(datanum,1,numRows*numColumns)
nextmatrix=nextmatrix.reshape(datanum,1,numRows,numColumns)
return nextmatrix, numImages
def loadMNISTlabels(absFilePathandName,datanum=60000):
labels=open(absFilePathandName,'rb')
buf=labels.read()
index=0
magic, numLabels = struct.unpack_from('II' , buf , index)
print magic, numLabels
index += struct.calcsize('II')
if magic != 2049:
raise Exception
datablock=""+str(datanum)+"B"
#nextmatrix=struct.unpack_from('60000B' ,buf, index)
nextmatrix=struct.unpack_from(datablock ,buf, index)
nextmatrix=numpy.array(nextmatrix)
return nextmatrix, numLabels
def simpleCNN(numofFilter,filter_size,pooling_size=2,maxIter=1000,imageNum=500):
decayRate=0.01
MNISTimage,num1=loadMNISTimage("F:\Machine Learning\UFLDL\data\common\\train-images-idx3-ubyte",imageNum)
print num1
row,col=numpy.shape(MNISTimage[0,0,:,:])
out_Di=numofFilter*((row-filter_size+1)/pooling_size)*((col-filter_size+1)/pooling_size)
MLP=BMNN2.MuiltilayerANN(1,[128],out_Di,10,maxIter)
MLP.setTrainDataNum(imageNum)
MLP.loadtrainlabel("F:\Machine Learning\UFLDL\data\common\\train-labels-idx1-ubyte")
MLP.initialweights()
#MLP.printWeightMatrix()
rng = numpy.random.RandomState(23455)
W_shp = (numofFilter, filter_size, filter_size)
W_bound = numpy.sqrt(numofFilter * filter_size * filter_size)
W_k=rng.uniform(low=-1.0 / W_bound,high=1.0 / W_bound,size=W_shp)
B_shp = (numofFilter,)
B= numpy.asarray(rng.uniform(low=-.5, high=.5, size=B_shp))
cIter=0
while cItermaxIter:
cIter += 1
ImageNum=random.randint(0,imageNum-1)
conv_out_map=cnn_conv(MNISTimage[ImageNum,0,:,:], W_k, B,"sigmoid")
out_pooling,max_index_Matrix=cnn_maxpooling(conv_out_map,2,"max")
pool_shape = numpy.shape(out_pooling)
MLP_input=out_pooling.reshape(1,1,out_Di)
#print numpy.shape(MLP_input)
DetaW,DetaB,temperror=MLP.backwardPropogation(MLP_input,ImageNum)
if cIter%50 ==0 :
print cIter,"Temp error: ",temperror
#print numpy.shape(MLP.Theta[MLP.Nl-2])
#print numpy.shape(MLP.Ztemp[0])
#print numpy.shape(MLP.weightMatrix[0])
theta_pool=MLP.Theta[MLP.Nl-2]*MLP.weightMatrix[0].transpose()
#print numpy.shape(theta_pool)
#print "theta_pool",theta_pool
temp=numpy.zeros((1,1,out_Di))
temp[0,:,:]=theta_pool
back_theta_pool=temp.reshape(pool_shape)
#print "back_theta_pool",numpy.shape(back_theta_pool)
#print "back_theta_pool",back_theta_pool
error_conv=backErrorfromPoolToConv(back_theta_pool,max_index_Matrix,conv_out_map,2)
#print "error_conv",numpy.shape(error_conv)
#print error_conv
conv_DetaW,conv_DetaB=backErrorfromConvToInput(error_conv,MNISTimage[ImageNum,0,:,:])
#print "W_k",W_k
#print "conv_DetaW",conv_DetaW
有哪些深度神经网络模型?
目前经常使用的深度神经网络模型主要有卷积神经网络(CNN) 、递归神经网络(RNN)、深信度网络(DBN) 、深度自动编码器(AutoEncoder) 和生成对抗网络(GAN) 等。
递归神经网络实际.上包含了两种神经网络。一种是循环神腊戚经网络(Recurrent NeuralNetwork) ;另一种是结构递归神经网络(Recursive Neural Network),它使用相似的网络结构递归形成更加复杂的深度网络。RNN它们都可以处理有序列的问题,比如时间序列等且RNN有“记忆”能力,可以“模拟”数据间的依赖关系。卷积网络的精髓就是适合处理结构化数据。
关于深度神经网络模型的相关学习,推荐CDA数据师的相关课程,课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的嫌历过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。这种教学方式能够引发学员的独立思考及主观能动性,学员掌握的技能知识可轮者陵以快速转化为自身能够灵活应用的技能,在面对不同场景时能够自由发挥。点击预约免费试听课。
神经网络:卷积神经网络(CNN)
神经网络 最早是由心理学家和神经学家提出的,旨在寻求开发和测试神经的计算模拟。
粗略地说, 神经网络 是一组连接的 输入/输出单元 ,其中每个连接都与一个 权 相关联。在学习阶段,通过调整权值,使得神经网络的预测准确性逐步提高。由于单元之间的连接,神经网络学习又称 连接者学习。
神经网络是以模拟人脑神经元的数学模型为基础而建立的,它由一系列神经元组成,单元之间彼此连接。从信息处理角度看,神经元可以看作是一个多输入单输出的信息处理单元,根据神经元的特性和功能,可以把神经元抽象成一个简单的数学模型。
神经网络有三个要素: 拓扑结构、连接方式、学习规则
神经网络的拓扑结构 :神经网络的单元通常按照层次排列,根据网络的层次数,可以将神经网络分为单层神经网络、两层神经网络、三层神经网络等。结构简单的神经网络,在学习时收敛的速度快,但准确度低。
神经网络的层数和每层的单元数由问题的复杂程度而定。问题越复杂,神经网络的层数就越多。例如,两层神经网络常用来解决线性问题,而多层网络就可以解决多元非线性问题
神经网络的连接 :包括层次之间的连接和每一层内部的连接,连接的强度用权来表示。
根据层次之间的连接方式,分为:
1)前馈式网络:连接是单向的,上层单元的输出是下层单元的输入,如反向传播网络,Kohonen网络
2)反馈式网络:除了单项的连接外,还把最后一层单元的输出作为第一层单元的输入,如Hopfield网络
根据连接的范围,分为:
1)全连接神经网络:每个单元和相邻层上的所有单元相连
2)局部连接网络:每个单元只和相邻层上的部分单元相连
神经网络的学习
根据学习方法分:
感知器:有监督的学习方法,训练样本的类别是已知的,并在学习的过程中指导模型的训练
认知器:无监督的学习方法,训练样本类别未知,各单元通过竞争学习。
根据学习时间分:
离线网络:学习过程和使用过程是独立的
在线网络:学习过程和使用过程是同时进行的
根据学习规则分:
相关学习网络:根据连接间的激活水平改变权系数
纠错学习网络:根据输出单元的外部反馈改变权系数
自组织学习网络:对输入进行自适应地学习
摘自《数学之美》对人工神经网络的通俗理解:
神经网络种类很多,常用的有如下四种:
1)Hopfield网络,典型的反馈网络,结构单层,有相同的单元组成
2)反向传播网络,前馈网络,结构多层,采用最小均方差的纠错学习规则,常用于语言识别和分类等问题
3)Kohonen网络:典型的自组织网络,由输入层和输出层构成,全连接
4)ART网络:自组织网络
深度神经网络:
Convolutional Neural Networks(CNN)卷积神经网络
Recurrent neural Network(RNN)循环神经网络
Deep Belief Networks(DBN)深度信念网络
深数茄度学习是指多层神经网络上运用各种机器学习算法解决图像,文本等各种问题的算法集合。深度学习从大类上可以归薯祥察入神经网络,不过在具体实现上有许多变化。
深度学习的核心是特征学习,旨在通过分层网络获取分层次的特征信息,从而解决以往需要人工设计特征的重要难题。
Machine Learning vs. Deep Learning
神经网络(主要是感知器)经常用于 分类
神经网络的分类知识体现在网络连接上,被隐式地存储在连接的权值中。
神经网络的学习就是通过迭代算法,对权值逐步修改的优化过程,学习的目标就是通过改变权值使训练集的样本都能被正确分类。
神经网络特别适用于下列情况的分类问题:
1) 数据量比较小,缺少足够的样本建立模型
2) 数据的结构难以用传统的统计方法来宴友描述
3) 分类模型难以表示为传统的统计模型
缺点:
1) 需要很长的训练时间,因而对于有足够长训练时间的应用更合适。
2) 需要大量的参数,这些通常主要靠经验确定,如网络拓扑或“结构”。
3) 可解释性差 。该特点使得神经网络在数据挖掘的初期并不看好。
优点:
1) 分类的准确度高
2)并行分布处理能力强
3)分布存储及学习能力高
4)对噪音数据有很强的鲁棒性和容错能力
最流行的基于神经网络的分类算法是80年代提出的 后向传播算法 。后向传播算法在多路前馈神经网络上学习。
定义网络拓扑
在开始训练之前,用户必须说明输入层的单元数、隐藏层数(如果多于一层)、每一隐藏层的单元数和输出层的单元数,以确定网络拓扑。
对训练样本中每个属性的值进行规格化将有助于加快学习过程。通常,对输入值规格化,使得它们落入0.0和1.0之间。
离散值属性可以重新编码,使得每个域值一个输入单元。例如,如果属性A的定义域为(a0,a1,a2),则可以分配三个输入单元表示A。即,我们可以用I0 ,I1 ,I2作为输入单元。每个单元初始化为0。如果A = a0,则I0置为1;如果A = a1,I1置1;如此下去。
一个输出单元可以用来表示两个类(值1代表一个类,而值0代表另一个)。如果多于两个类,则每个类使用一个输出单元。
隐藏层单元数设多少个“最好” ,没有明确的规则。
网络设计是一个实验过程,并可能影响准确性。权的初值也可能影响准确性。如果某个经过训练的网络的准确率太低,则通常需要采用不同的网络拓扑或使用不同的初始权值,重复进行训练。
后向传播算法学习过程:
迭代地处理一组训练样本,将每个样本的网络预测与实际的类标号比较。
每次迭代后,修改权值,使得网络预测和实际类之间的均方差最小。
这种修改“后向”进行。即,由输出层,经由每个隐藏层,到第一个隐藏层(因此称作后向传播)。尽管不能保证,一般地,权将最终收敛,学习过程停止。
算法终止条件:训练集中被正确分类的样本达到一定的比例,或者权系数趋近稳定。
后向传播算法分为如下几步:
1) 初始化权
网络的权通常被初始化为很小的随机数(例如,范围从-1.0到1.0,或从-0.5到0.5)。
每个单元都设有一个偏置(bias),偏置也被初始化为小随机数。
2) 向前传播输入
对于每一个样本X,重复下面两步:
向前传播输入,向后传播误差
计算各层每个单元的输入和输出。输入层:输出=输入=样本X的属性;即,对于单元j,Oj = Ij = Xj。隐藏层和输出层:输入=前一层的输出的线性组合,即,对于单元j, Ij =wij Oi + θj,输出=
3) 向后传播误差
计算各层每个单元的误差。
输出层单元j,误差:
Oj是单元j的实际输出,而Tj是j的真正输出。
隐藏层单元j,误差:
wjk是由j到下一层中单元k的连接的权,Errk是单元k的误差
更新 权 和 偏差 ,以反映传播的误差。
权由下式更新:
其中,△wij是权wij的改变。l是学习率,通常取0和1之间的值。
偏置由下式更新:
其中,△θj是偏置θj的改变。
Example
人类视觉原理:
深度学习的许多研究成果,离不开对大脑认知原理的研究,尤其是视觉原理的研究。1981 年的诺贝尔医学奖,颁发给了 David Hubel(出生于加拿大的美国神经生物学家) 和Torsten Wiesel,以及Roger Sperry。前两位的主要贡献,是“发现了视觉系统的信息处理”, 可视皮层是分级的 。
人类的视觉原理如下:从原始信号摄入开始(瞳孔摄入像素Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形的),然后进一步抽象(大脑进一步判定该物体是只气球)。
对于不同的物体,人类视觉也是通过这样逐层分级,来进行认知的:
在最底层特征基本上是类似的,就是各种边缘,越往上,越能提取出此类物体的一些特征(轮子、眼睛、躯干等),到最上层,不同的高级特征最终组合成相应的图像,从而能够让人类准确的区分不同的物体。
可以很自然的想到:可以不可以模仿人类大脑的这个特点,构造多层的神经网络,较低层的识别初级的图像特征,若干底层特征组成更上一层特征,最终通过多个层级的组合,最终在顶层做出分类呢?答案是肯定的,这也是许多深度学习算法(包括CNN)的灵感来源。
卷积神经网络是一种多层神经网络,擅长处理图像特别是大图像的相关机器学习问题。卷积网络通过一系列方法,成功将数据量庞大的图像识别问题不断降维,最终使其能够被训练。
CNN最早由Yann LeCun提出并应用在手写字体识别上。LeCun提出的网络称为LeNet,其网络结构如下:
这是一个最典型的卷积网络,由 卷积层、池化层、全连接层 组成。其中卷积层与池化层配合,组成多个卷积组,逐层提取特征,最终通过若干个全连接层完成分类。
CNN通过卷积来模拟特征区分,并且通过卷积的权值共享及池化,来降低网络参数的数量级,最后通过传统神经网络完成分类等任务。
降低参数量级:如果使用传统神经网络方式,对一张图片进行分类,那么,把图片的每个像素都连接到隐藏层节点上,对于一张1000x1000像素的图片,如果有1M隐藏层单元,一共有10^12个参数,这显然是不能接受的。
但是在CNN里,可以大大减少参数个数,基于以下两个假设:
1)最底层特征都是局部性的,也就是说,用10x10这样大小的过滤器就能表示边缘等底层特征
2)图像上不同小片段,以及不同图像上的小片段的特征是类似的,也就是说,能用同样的一组分类器来描述各种各样不同的图像
基于以上两个假设,就能把第一层网络结构简化
用100个10x10的小过滤器,就能够描述整幅图片上的底层特征。
卷积运算的定义如下图所示:
如上图所示,一个5x5的图像,用一个3x3的 卷积核 :
101
010
101
来对图像进行卷积操作(可以理解为有一个滑动窗口,把卷积核与对应的图像像素做乘积然后求和),得到了3x3的卷积结果。
这个过程可以理解为使用一个过滤器(卷积核)来过滤图像的各个小区域,从而得到这些小区域的特征值。在实际训练过程中, 卷积核的值是在学习过程中学到的。
在具体应用中,往往有多个卷积核,可以认为, 每个卷积核代表了一种图像模式 ,如果某个图像块与此卷积核卷积出的值大,则认为此图像块十分接近于此卷积核。如果设计了6个卷积核,可以理解为这个图像上有6种底层纹理模式,也就是用6种基础模式就能描绘出一副图像。以下就是24种不同的卷积核的示例:
池化 的过程如下图所示:
可以看到,原始图片是20x20的,对其进行采样,采样窗口为10x10,最终将其采样成为一个2x2大小的特征图。
之所以这么做,是因为即使做完了卷积,图像仍然很大(因为卷积核比较小),所以为了降低数据维度,就进行采样。
即使减少了许多数据,特征的统计属性仍能够描述图像,而且由于降低了数据维度,有效地避免了过拟合。
在实际应用中,分为最大值采样(Max-Pooling)与平均值采样(Mean-Pooling)。
LeNet网络结构:
注意,上图中S2与C3的连接方式并不是全连接,而是部分连接。最后,通过全连接层C5、F6得到10个输出,对应10个数字的概率。
卷积神经网络的训练过程与传统神经网络类似,也是参照了反向传播算法
第一阶段,向前传播阶段:
a)从样本集中取一个样本(X,Yp),将X输入网络;
b)计算相应的实际输出Op
第二阶段,向后传播阶段
a)计算实际输出Op与相应的理想输出Yp的差;
b)按极小化误差的方法反向传播调整权矩阵。
关于卷积神经网络模型和卷积神经网络模型有哪些的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。