dijkstra算法(dijkstra算法求解最短路径例题)
本篇文章给大家谈谈dijkstra算法,以及dijkstra算法求解最短路径例题对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
dijkstra算法有哪些?
迪杰斯特拉算法用来解决从顶点v0出发到其余顶点的最短路径,该算法按照最短路径长度递增的顺序产生所以闹塌最短路径。
对于图G=(V,E),将图中的顶点分成两组:
第一组S:已求出的最短路径的终点集合(开始为{v0})。
第二组V-S:尚未求出最短路径的终点集合(开始为V-{v0}的全部结点)。
算法将按最短路径长度的递增顺序逐个将第二组的顶点加入到第一组中渣弯缺,直到所有顶点都被加入到第一组顶点集S为止。
扩展资料:
从dis数组选择最小值,则该值就是源点s到该值对应的顶点的最短路径,并且把该点加入到T中,此时完成一个顶点,需要看看新加入的顶点如辩是否可以到达其他顶点并且看看通过该顶点到达其他点的路径长度是否比源点直接到达短,如果是,那么就替换这些顶点在dis中的值。 然后,又从dis中找出最小值,重复上述动作,直到T中包含了图的所有顶点。
参考资料来源:百度百科-Dijkstra算法
[img]dijkstra算法是什么?
dijkstra算法最短路径算法。
Dijkstra是典型最短路径算法,用于计算一个节点到其他节点的最短路径。该算法使用的是贪心策略:每次都找出剩余顶点中与源点距离最近的一个配老顶点。
给定一带权图,图中每条边的权值是非负的,代表着两顶点之间的距离。指定图中的一顶点为源点,找出源点到其御厅它顶点的最短路径和其长度的问题,即是单源最短路径问题。
Dijkstra的培拆升原理
(1)初始化时,S只含有源节点。
(2)从U中选取一个距离v最小的顶点k加入S中(该选定的距离就是v到k的最短路径长度)。
(3)以k为新考虑的中间点,修改U中各顶点的距离;若从源节点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值是顶点k的距离加上k到u的距离。
迪杰斯特拉(Dijkstra)算法详解
Dijkstra算法设置一个集合S记录已求得的最短路径的顶点,初始时把源点v0放入S,集合S每并入一个新顶点vi,都要修改源点v0到集合V-S中顶点当前的最颂羡短路径长度值。
本例基拿樱配于邻接矩阵存储的图。
在构造的过程中要消指设置三个辅助数组:
假设从顶点0出发,即v0=0,集合S最初只包含顶点0,邻接矩阵 edge[][] 表示带权有向图, edge[i][j] 表示有向边i,j的权值,若不存在有向边i,j,则 edge[i][j] 为∞。
Dijkstra算法的步骤如下:
顶点数:5,弧数:10
顶点编号:A B C D E
邻接矩阵:
参考结果:
最短路径算法(Dijkstra)
Dijkstra( 迪科斯特拉 )算法是用来解决核激唯单源最短路径的算法,要求路径权值非负数。该算法利用了深度优先搜索和贪心的算法。
下面是一个有权图,求从A到各个节点的最短路径。
第1步:从A点出发,判断每个点到A点的路径(如果该点不能直连A点则距离值为无穷大,如果该点能和A直连则是当前的权值),计算完之后把A点上色,结果如下图:
第2步:从除A点之外的点查找到距离A点最近的点C,从C点出发查找其邻近的节点(除去已上色的点),并重新计算C点的邻近点距离A点的值,如图中B点,若新值(C点到A点的值+C点到该点的路径)小于原值,则将值更新为5,同理更新D、E点。同时将C标铅陵记为已经处理过,如图所示涂色。
第3步:从上色的节点中查找距离A最近的B点,重复第3步操作。
第4步: 重复第3步,改培2步,直到所有的节点都上色。
最后就算出了从A点到所有点的最短距离。
leetcode 743题
关于dijkstra算法和dijkstra算法求解最短路径例题的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。