hivelimit(hivelimit10到20行)

本篇文章给大家谈谈hivelimit,以及hivelimit10到20行对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

hive的Hive常用优化方法

1、join连接时的优化:当三个或多个以上的表进行join操作时,如果每个on使用相同的字段连接时只会产生一个mapreduce。

2、join连接时的优化:差早当多个表进行查询时,从左到右表的大小顺序应该是从小到大。原因:hive在对每行记录操作时会把其他表先缓存起来,直到扫描最后的表进行计算

3、在where字句中增加分区过滤器。

4、当可以使用left semi join 语法时不要使用inner join,前者效率更高。原因:对于左表中指定的一条记录,一旦在右表中找到立即停止扫描。

5、如果所有表中有一张表足够小,则可置于内存中,这样在和其他表进行连接的时候就能完成匹配,省友庆模略掉reduce过程。设置属性即可实现,set hive.auto.covert.join=true; 用户可以配置希望被优化的小表的大小 set hive.mapjoin.smalltable.size=2500000; 如果需要使用这两个配置可置入$HOME/.hiverc文件中。

6、同一种数据的多种处理:从一个数据源产生的多个数据聚合,无需每次聚合都需要重新扫描一次。

例如:insert overwrite table student select * from employee; insert overwrite table person select * from employee;

可以优化成:from employee insert overwrite table student select * insert overwrite table person select *

7、limit调优:limit语句通常是执行整个语句后返回部分结果。set hive.limit.optimize.enable=true;

8、开启并发执行。某个job任务中可能包含众多的阶段,其中某些阶段没有依赖关系可以并发执行,开启并发执行后job任务可以更快的完成。设置属性:set hive.exec.parallel=true;

9、hive提供的严格模式,禁止3种情况下的查询模式。

a:当表为分区表时,where字句后没有分区字段和限制时,不允许执行。

b:当使用order by语句时,必须使用limit字段,因为order by 只会产生一个reduce任务。

c:限制笛卡尔积的查询。

10、合好缓理的设置map和reduce数量。

11、jvm重用。可在hadoop的mapred-site.xml中设置jvm被重用的次数。

hive中 limit什么意思

limit

[英][ˈlɪmɪt][美][ˈlɪmɪt]

n.限制; 限量,限度; 界限;

vt.限制,限定;

第三人称单数:limits复数:limits现在进行时:limiting过去式:limited

例句:

1.

Put in your spending limit for a trip ( i.e. the duty limit you're facing at customs).

你可以在这款应用中岩纯埋输入自己粗蚂的旅行预算限额(或通关时的裤码免税额度)。

2.

But there is a limit.

但这方面存在限制。

[img]

hive limit怎么使用

hive.groupby.skewindata=true:数据倾斜时负载均衡,当选项设定为true,生成的查轮雹伏询计划会有两个MRJob。第一个MRJob 中,

Map的输出结果集合会随机分布到Reduce中,每个Reduce做部分聚合操作,并输出结果,这样处理的结果是相同的GroupBy Key

有可能被分发到不同的Reduce中,从而达到负载均衡的目的;第二个MRJob再根据预处理的数据结果按照GroupBy Key分布到

Reduce中(这个过程可以腊携保证相同的GroupBy Key被分布到同一个Reduce中),最后完成最肆搏终的聚合操作。

Hive优化的十大方法

Hive用的好,才能从数据中挖掘出更多的信息来。用过hive的朋友,我想或多或少都有类似的经历:一天下来,没跑几次hive,就到下班时间了。Hive在极大数据或者数据不平衡等情况下,表现往往一般,因此也出现了presto、spark-sql等替代品。这里重点讲解hive的优化方式,例如

一. 表连接优化

二. 用insert into替换union all

如果union all的部分个数大于2,或者每个union部分数据量大,应该拆成多个insert into 语句,实际测试过程中,执行时间能提升50%。示例参考如下:

可以改写为:

三. order by sort by

order by : 对查询结果进行全局排序消耗时间长,需要set hive.mapred.mode=nostrict

sort by : 局部排序,并非全局有序,提高效率。

四. transform+python

一种嵌入在hive取数流程中的自定义函数,通过transform语句可以把在hive中不方便实现的功能在python中实现,然后写入hive表中。示例语法如下:

如果除python脚本外还有其它依赖资源,可以使用ADD ARVHIVE。

五. limit 语句快速出结果

一般情况下,Limit语句还是需要执行整个查询语句,然后再返回部分结果。有一个配置属性可以开启,避免这种情况—对数据源进行抽样

缺点:有可能部分数据永远不会被处理到

六. 本地模式

对于小数租返据集,为查询触发执行任务消耗的时间实际执行job的时间,因此可以通过本地模式,在单台机器上(或某些时候在单个进程上)处理所有的任务。

可以通过设置属性hive.exec.mode.local.auto的值为true,来让Hive在适当的时候自动启动这个优化,也可以将这个配置写在$HOME/.hiverc文件中。

当一个job满足如下条件才能真正使用本地模式:

七. 并行执行

Hive会将一个查询转化为一个或多个阶段,包括:MapReduce阶段、抽样阶段、合并阶段、limit阶段等。默认情况下,一次只执行一个阶段。 不过,如果某些阶段不是互相依赖,是可以并行执行的。

会比较耗系统资源。

八. 调整mapper和reducer的个数

假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个弊虚饥map数

假设input目录下有3个文件a,b,c,大小分别为10m,20m,130m,那么hadoop会分隔成4个块(10m,20m,128m,2m),从而产生4个map数。

即如果文件大于块大小(128m),那么会拆分,如果小于块大小,则把该文件当成一个誉散块。

map执行时间:map任务启动和初始化的时间+逻辑处理的时间。

减少map数

若有大量小文件(小于128M),会产生多个map,处理方法是:

前面三个参数确定合并文件块的大小,大于文件块大小128m的,按照128m来分隔,小于128m,大于100m的,按照100m来分隔,把那些小于100m的(包括小文件和分隔大文件剩下的)进行合并。

set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat; – 执行前进行小文件合并。

增加map数

当input的文件都很大,任务逻辑复杂,map执行非常慢的时候,可以考虑增加Map数,来使得每个map处理的数据量减少,从而提高任务的执行效率。

set mapred.reduce.tasks=?

一般根据输入文件的总大小,用它的estimation函数来自动计算reduce的个数:reduce个数 = InputFileSize / bytes per reducer

九. 严格模式

十. 数据倾斜

表现:

任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成。因为其处理的数据量和其他reduce差异过大。单一reduce的记录数与平均记录数差异过大,通常可能达到3倍甚至更多。 最长时长远大于平均时长。

原因:

解决方案:参数调节

关于hivelimit和hivelimit10到20行的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

标签列表