关于redissmembers的信息

本篇文章给大家谈谈redissmembers,以及对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

右手Redis(快速入门)

命令格式

中文

查看Redis里面有多少Key

命令格式

获取不存在的Key返回 nil

命令格式

创建redis客户连接

创建字符串

获得字符串的值

更新字符串的值,key存在则不覆盖

对字符串进行增加和减小

向列表中插入数据的命令为:

从列表左侧插入数据

“lpush”和“rpush”语法相稿睁扒同

命令格式

查看索引为6的数据

查看索引从早圆2到5的数据,包含两端

命令格式

在数据弹出的同时,被弹的数据也会从列表中删除

修改命令

批量添加

Python中使用列表向Redis列表中批量添加数据

在Python中获取Redis列表的多个数据

使用for循环把数据展开

从左右侧弹出数据

命令格式

命令格式

命令格式

smembers命令不会删除数据。如果集合里的数据量极大,谨慎使用,消耗系统I/O资源

如果数据存在,则返回“1”;如果数据不存在,则返回“0”

删除特定的数据

命令格式

命令格式

命令格式

求key1中有,在key2 key3...没有的数据

“scard”查看集合中数据条数,“spop”从集合中键昌获取一条数据,Python中无“count”参数

“smembers”读取集合全部数据

“srem”删除特定数据

Redis --- 八种数据类型(基本命令)

String、Hash、List、Set和Zset。

等同于java中的, MapString,String string 是redis里面的最基本的数据类型,一个key对应一个value。

应用场景 :String是最常用的一种数据类型,普通的key/value存储都可以归为此类,如用户信息,登录信息和配置信息等;

实现方式 :String在redis内部存储默认就是一个字符串,被redisObject所引用,当遇到incr、decr等操作(自增自减等原子操作)时会转成数值型进行计算,此时redisObject的encoding字段为int。

Redis虽然是用C语言写的,但却没有直接用C语言的字符串,而是自己实现了一套字符串。目的就是为了提升速度,提升性能。 Redis构建了一个叫做简单动态字符串(Simple Dynamic String),简称SDS。

Redis的字符串也会遵守C语言的字符串的实现规则,即 最后一个字符为空字符。然而这个空并搭字符不会被计算在len里头。

Redis动态扩展步骤:

Redis字符串的性能优势

常用命令 :set/get/decr/incr/mget等,具体如下;

ps:计数器(字符串的内容为整数的时候可以使用),如 set number 1。

补充:

等同于java中的: MapString,MapString,String ,redis的hash是一个string类型的field和value的映射表, 特别适合存储对象。 在redis中,hash因为是一个集合,所以有两层。第一层是key:hash集合value,第二层是hashkey:string value。所以判断是否采用hash的时候可以参照有两层key的设计来做参考。并且注意的是, 设置过期时间只能在第一层的key上面设置。

应用场景 :我们要存储一个用户信息对象数据,其中包括用户ID、用户姓名、年龄和生日,通过用户ID我们希望获取该用户的姓名或者年龄或者生日枝旅;

实现方式 :Redis的Hash实际是内部存储的Value为一个HashMap,并提供了直接存取这个Map成员的接口。如,Key是用户ID, value是一个Map。 这个Map的key是成员的属性名,value是属性值 。这样对数据的修改和存取都可以直接通过其内部Map的Key(Redis里称内部Map的key为field), 也就是通过 key(用户ID) + field(属性标签) 就可以操作对应属性数据。 当前HashMap的实现有两种方式 :当HashMap的成员比较少时Redis为了节省内存会采用类似一维数组的方式来紧凑存储,而不会采用真正的HashMap结构,这时对应的value的redisObject的encoding为zipmap,当成员数量增大时会自动转成猛蔽凳真正的HashMap,此时redisObject的encoding字段为int。

常用命令 :hget/hset/hgetall等,具体如下:

等同于java中的 MapString,ListString ,list 底层是一个链表,在redis中,插入list中的值,只需要找到list的key即可,而不需要像hash一样插入两层的key。 list是一种有序的、可重复的集合。

应用场景 :Redis list的应用场景非常多,也是Redis最重要的数据结构之一,比如twitter的关注列表,粉丝列表等都可以用Redis的list结构来实现;

实现方式 :Redis list的实现为一个 双向链表 ,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销,Redis内部的很多实现,包括 发送缓冲队列 等也都是用的这个数据结构。

常用命令 :lpush/rpush/lpop/rpop/lrange等,具体如下:

性能总结 :

它是一个字符串链表,left、right都可以插入添加。

等同于java中的 MapString,SetString ,Set 是一种无序的,不能重复的集合。并且在redis中,只有一个key它的底层由hashTable实现的,天生去重。

应用场景 :Redis set对外提供的功能与list类似是一个列表的功能,特殊之处在于set是可以自动去重的,当你需要存储一个列表数据,又不希望出现重复数据时,set是一个很好的选择,并且 set提供了判断某个成员是否在一个set集合内的重要接口 ,这个也是list所不能提供的;如保存一些标签的名字。标签的名字不可以重复,顺序是可以无序的。

实现方式 :set 的内部实现是一个 value永远为null的HashMap,实际就是通过计算hash的方式来快速排重的,这也是set能提供判断一个成员是否在集合内的原因。

常用命令 :sadd/spop/smembers/sunion等,具体如下:

ZSet(Sorted Set:有序集合) 每个元素都会关联一个double类型的分数score,分数允许重复,集合元素按照score排序( 当score相同的时候,会按照被插入的键的字典顺序进行排序 ),还可以通过 score 的范围来获取元素的列表。

应用场景 :Redis sorted set的使用场景与set类似,区别是set不是自动有序的,而sorted set可以 通过用户额外提供一个优先级(score)的参数来为成员排序,并且是插入有序的,即自动排序。 当你需要一个有序的并且不重复的集合列表,那么可以选择sorted set数据结构,比如twitter 的public timeline可以以发表时间作为score来存储,这样获取时就是自动按时间排好序的。

底层实现 : zset 是 Redis 提供的一个非常特别的数据结构,常用作排行榜等功能,以用户 id 为 value ,关注时间或者分数作为 score 进行排序。实现机制分别是 zipList 和 skipList 。规则如下:

zipList:满足以下两个条件

skipList:不满足以上两个条件时使用跳表、组合了hash和skipList

为什么用skiplist不用平衡树?

主要从内存占用、对范围查找的支持和实现难易程度这三方面总结的原因。

拓展:mysql为什么不用跳表?

常用命令 :zadd/zrange/zrem/zcard等;

官网地址:

可以用来推算两地之间的距离,方圆半径内的人。

关于经度纬度的限制:

一般我们使用Hyperloglog做基数统计。

什么是基数?就是一个集合中不重复的数的个数。

集合A:{1,3,5,7,9,7}

集合B:{1,3,5,7,9}

AB集合的基数都是5

应用:统计网站的访问量(一个人访问网站很多次仍然算作一次)。

优点:占用的内存是固定的,找2^64次方个数的基数,只需要12KB内存。

缺点:有0.81%的错误率,可以忽略不计

概述: bitmap 存储的是连续的二进制数字(0 和 1),通过 bitmap, 只需要一个 bit 位来表示某个元素对应的值或者状态,key 就是对应元素本身 。 我们知道 8 个 bit 可以组成一个 byte,所以 bitmap 本身会极大的节省储存空间。

应用场景: 适合需要保存状态信息(比如是否签到、是否登录...)并需要进一步对这些信息进行分析的场景。比如用户签到情况、活跃用户情况、用户行为统计(比如是否点赞过某个视频)。

针对上面提到的一些场景,这里进行进一步说明。

使用场景一:用户行为分析 很多网站为了分析你的喜好,需要研究你点赞过的内容。

使用场景二:统计活跃用户

使用时间作为 key,然后用户 ID 为 offset,如果当日活跃过就设置为 1

那么我该如果计算某几天/月/年的活跃用户呢(暂且约定,统计时间内只有有一天在线就称为活跃),有请下一个 redis 的命令

使用场景三:用户在线状态

对于获取或者统计用户在线状态,使用 bitmap 是一个节约空间效率又高的一种方法。

只需要一个 key,然后用户 ID 为 offset,如果在线就设置为 1,不在线就设置为 0。

补充 :

巨人的肩膀:

[img]

redis数据类型和应用场景

Redis是当前比较热门的NOSQL系统之一,它是一个开源的使用ANSI c语言编写的key-value存储系统(区别于MySQL的二维表格的形式存储。),Redis数据都是缓存在计算机内存中并且它会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,实现数据的持久化。谈到存储数据,那么必然要涉及到相关的数据类型,redis主要有以下数据类型:

描述:string 是 redis 最基本的类型,你可以理解成与 Memcached 一模一样的类型,一个 key 对应一个启碧 value。value其实不仅是String,也可以是数字。string 类型是二进制安全的。意思是 redis 的 string 可以包含任何数据。比如jpg图片或者序列化的对象。string 类型是 Redis 最基本的数据类型,string 类型的值最大能存储 512MB。

常用命令:get、set、incr、decr、mget等。

应用场景:规key-value缓存应用。常规计数: 点赞数, 粉丝数。

描述: hash 是一个键值(key = value)对集合。Redis hash 是一个 string 类型的 field 和 value 的映射表,hash 特别适合用于存储对象。

常用命令:hget,hset,hgetall 等。

应用场景:存储部分变更数据,如商品信息等。

描述:list 列表是简单的字符串列表,按照插入顺序排序。你可以添加一指圆个元素到列表的头部(左边)或者尾部(右边)。列表最多可存储 232 - 1 元素 (4294967295, 每个列表可存储40多亿)。

常用命令:lpush(添加左边元素),rpush,lpop(移除左边第一个元素),rpop,lrange(获取列表片段,LRANGE key start stop)等。

应用场景:消息队列,关注列表,粉丝列表等都可以用Redis的list结构来实现。

描述: set是string类型的无序集合。集合是通过hashtable实现的,概念和数学中个的集合基本类似,可以交集,并集,差集等等,set中的元素是没有顺序的。所以添加,删除,查找的复杂度都是O(1)。

常用命令:sadd,spop,smembers,sunion 等。

应用场景:交集,并集,差集(微博中,可以将一个用户所有的关注人存在一个集合中,将其所有粉丝存在一个集合。Redis还为集合提供了求交集、并集、差集等操作,可以非常方便的实现如共同关注、共同喜好、二度好友等功能,对上面的所有集合操作,你还可以使用不同的命令选择将结果返回给客户端还是存集到一个新的集合中)

描述:zset 和 set 一样也是string类型元素的集合,且不允许重复的成员。不同是可以打分(排序)

常用命令:zadd,zrange,zrem,zcard等

应用场唯旁塌景:排行榜,带权重的消息队列

描述:Bitmaps这个“数据结构”可以实现对位的操作。 把数据结构加上引号主要因为:

Bitmaps本身不是一种数据结构, 实际上它就是字符串 , 但是它可以对字符串的位进行操作。

Bitmaps单独提供了一套命令, 所以在Redis中使用Bitmaps和使用字符串的方法不太相同。 可以把Bitmaps想象成一个以位为单位的数组, 数组的每个单元只能存储0和1, 数组的下标在Bitmaps中叫做偏移量。其实大多数Bitmaps的应用场景可以用其他数据类型来实现,用Bitmaps主要是存储空间占用特别少

常用命令:getbit key offset;setbit key offset value

应用场景:统计用户访问,统计电影某天的的播放量

描述:Redis 在 2.8.9 版本添加了 HyperLogLog 结构。Redis HyperLogLog 是用来做基数统计的算法,HyperLogLog 的优点是,在输入元素的数量或者体积非常非常大时,计算基数所需的空间总是固定 的、并且是很小的。在 Redis 里面,每个 HyperLogLog 键只需要花费 12 KB 内存,就可以计算接近 2^64 个不同元素的基 数。这和计算基数时,元素越多耗费内存就越多的集合形成鲜明对比。但是,因为 HyperLogLog 只会根据输入元素来计算基数,而不会储存输入元素本身,所以 HyperLogLog 不能像集合那样,返回输入的各个元素。这类数据结构的基本大的思路就是使用统计概率上的算法,牺牲数据的精准性来节省内存的占用空间及提升相关操作的性能

常用命令:pfadd, pfcount,pfmerge

应用场景:统计网站的每日UV

描述:GEO功能在Redis3.2版本提供,支持存储地理位置信息用来实现诸如附近位置、摇一摇这类依赖于地理位置信息的功能.geo的数据类型为zset.

常用命令:geoadd,geopos, geodist

应用场景:附近位置、摇一摇

参考列表:

Redis五种数据类型及应用场景

关于redissmembers和的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

相关阅读

  • mssqlserver(mssqlserver怎么安装)

    mssqlserver(mssqlserver怎么安装)

    简介:MSSQL Server是由微软公司开发的一种关系型数据库管理系统,是在Windows操作系统上运行的数据库服务器。它旨在提供可靠性、高性能和安全性,被广泛应用于企业级应用程序和网站开发中。多级标题:一、MSSQL Server的特点...

    2024.04.22 22:38:00作者:intanet.cnTags:mssqlserver
  • js转json(js转json在线)

    js转json(js转json在线)

    **简介**在IT技术领域中,JavaScript(简称JS)是一种常用的脚本语言,用于网页开发和编程。JSON(JavaScript Object Notation)则是一种轻量级的数据交换格式,常用于存储和传输数据。本文将讨论如何将Ja...

    2024.04.22 22:23:30作者:intanet.cnTags:js转json
  • 数据库有那些(数据库有哪些索引)

    数据库有那些(数据库有哪些索引)

    一、简介数据库是计算机中用于存储和管理数据的系统,是信息系统中最重要的组成部分之一。数据库技术在信息化时代发挥着重要作用,广泛应用于各行各业。数据库的种类有很多,每种都有其特点和适用场景。下面将介绍一些常见的数据库类型。二、关系数据库1....

    2024.04.22 22:14:00作者:intanet.cnTags:数据库有那些
  • 关于sparksqlsplit的信息

    关于sparksqlsplit的信息

    简介:作为一种基于内存的分布式数据处理框架,Spark SQL使得数据分析更加高效和灵活。而在Spark SQL中,split函数是非常常用的函数,用于将字符串通过指定的分隔符进行拆分。本文将详细介绍sparksqlsplit函数的用法和示...

    2024.04.22 22:13:30作者:intanet.cnTags:sparksqlsplit
  • 数据的处理方法(实验数据的处理方法)

    数据的处理方法(实验数据的处理方法)

    在当今数字化时代,数据处理变得越发重要。从企业管理到科研领域,人们需要处理大量的数据以获取有价值的信息。本文将介绍一些常见的数据处理方法,帮助读者更好地理解和应用数据处理技术。# 传统数据处理方法传统数据处理方法主要包括数据录入、数据清洗、...

    2024.04.22 22:09:30作者:intanet.cnTags:数据的处理方法
  • mongodb和hbase(mongodb和hbase性能)

    mongodb和hbase(mongodb和hbase性能)

    MongoDB和HBase是两种流行的NoSQL数据库系统,它们在处理大规模数据和高并发访问方面都有很好的表现。本文将对MongoDB和HBase进行比较和分析,以帮助读者了解它们各自的优缺点和适用场景。# 一、MongoDB介绍Mongo...

    2024.04.22 22:00:00作者:intanet.cnTags:mongodb和hbase
  • mysql转sqlserver(MySQL转sqlserver数据库)

    mysql转sqlserver(MySQL转sqlserver数据库)

    **简介**将MySQL数据库转移到SQL Server数据库是常见的需求,因为有时候企业需要更稳定、更强大的数据库管理系统来满足数据需求。在本文中,我们将详细讨论如何将MySQL数据库成功转移到SQL Server数据库。**准备工作**...

    2024.04.22 21:45:30作者:intanet.cnTags:mysql转sqlserver
  • 数据库的建立(数据库的建立与维护实验心得)

    数据库的建立(数据库的建立与维护实验心得)

    标题:数据库的建立简介:数据库是指在计算机系统中,用于存储和管理数据的系统。在IT技术领域,数据库起着至关重要的作用,它可以帮助我们更好地组织和管理数据,提高数据的访问效率和安全性。下面将详细介绍数据库的建立过程和相关知识。一、数据库类型1...

    2024.04.22 21:30:00作者:intanet.cnTags:数据库的建立