数据仓库技术(数据仓库技术是指将数据从来源端经过抽取)

本篇文章给大家谈谈数据仓库技术,以及数据仓库技术是指将数据从来源端经过抽取对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

什么是ETL?

ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。ETL一词较常用在数据仓库,但其对象并不限于数据仓库。

数据仓库是枣芹为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它是单个数据存储,出于分析性报告和决策支持目的而创建。 为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制。

ETL是将昌岩睁业务系统的数据经过抽取、清洗转换之后加载到数据仓库的过程,耐岁目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据, ETL是BI(商业智能)项目重要的一个环节。

扩展资料:

ETL与ELT:

ETL所描述的过程,一般常见的作法包含ETL或是ELT(Extract-Load-Transform),并且混合使用。通常愈大量的数据、复杂的转换逻辑、目的端为较强运算能力的数据库,愈偏向使用ELT,以便运用目的端数据库的平行处理能力。

ETL(orELT)的流程可以用任何的编程语言去开发完成,由于ETL是极为复杂的过程,而手写程序不易管理,有愈来愈多的企业采用工具协助ETL的开发,并运用其内置的metadata功能来存储来源与目的的对应(mapping)以及转换规则。

工具可以提供较强大的连接功能(connectivity)来连接来源端及目的端,开发人员不用去熟悉各种相异的平台及数据的结构,亦能进行开发。当然,为了这些好处,付出的代价便是金钱。

[img]

数据仓库是什么意思啊?通俗的讲

数据仓库:数据仓库之父比尔·恩门(Bill Inmon)在1991年出版的“Building the Data Warehouse”(《建立数据仓库》)一书中所提出数据仓库是一个面向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,从字面意义上看数据仓库就是数据的仓库,它的实质就是一个可以容纳更多数据的数据集。其目的是通过将操作型数据集成带统一的环境中,为企业所有级别的决策制定过程,提供所有类型数据支撑的战略集合,主要是用于数据挖掘和数据分析,以建立数据沙盘为基础,为消灭消息孤岛和支持决策。数唤纯据仓库关注的是解决数据一致芦链兆性,可信性,集合性……通过统一数据口径,整理清洗数据将杂乱无序的业务数据转化为对于业务运营、业务分析来说简单易用的数据形式。

就零售行业来讲,其每天进行的交易行为是以万或者千万来讲的,每一次数据录入必须要在极短的时间内完成。所以数据库只能储存短时间的一段数据,数据仓库则是根据这些时效数据,对数据进行清洗处理,然陪租后进行分析,挖掘利用数据仓库中的数据价值,为企业进行决策提供数据支撑。

数据仓库的技术结构有哪些

? (一)数据源 是数据仓库系统的基础,是整个系统的数据源泉。通常包括企业内部信息和外部信息。内部信息包括存放于 RDBMS 中的各种业务处理数据和各类文档数据。外部信息包括各类法律法规、市场信息和竞争对手的信息等等; (二)数据的存储与管理举拍 是整个数据仓库系统的核心。数据仓库的真正关键是数据的存储和管理。数据仓库的组织管理方式决定了它有别于传统数据库,同时也决定了其对外部数据的表现形式。要决定采用什么产品和技术来建立数据仓库的核心,则需要从数据仓库的技术特点着手分析。针对现有各业务系统的数据,进行抽取、清理,并有效集成,按照主题进行组织。数正迹羡据仓库按照数据的覆盖范围可以分为企业级数据仓库和部门级数据仓库(通常称为数据集市)。 (三)OLAP(联机分析处理)服务器 对分析需要的数据进行有效集成,按多维模型予以组织,以便进行多角度、多层次的分析,并发现趋势。其具体实现可以分为:ROLAP(关系型在线分析处理)、MOLAP(多维在线分析处理)和 HOLAP(混合型线上分析处理)。ROLAP 基本数据和聚合数据均存放在 RDBMS 之中;MOLAP 基本数据和聚合数据均存放于多维数据库中;HOLAP 基本数据存放于RDBMS 之中,聚合数据存放于多维数据库中。 (四)前端工具 主要包括各种报表工具、查询工具、数据分析工具、数据挖掘工具以数据挖掘及各种基于数据仓库或数据集市的应用开发工具。其中数据分析工具主要针对 OLAP 服务器,报表工具、数据挖掘工具主要针对数据仓库。 ----------------------------- 由安信公司历经 4 年研发的监测数据管理平台,采用独创的技术架构,在 B/S 架构上融入 C/S 模式,囊括了实验室管理系统、监测站办公自动化、监测站综合业务管理系统、监测数据上报系统等诸多系统,把各个系统有机融合在一起,不同的业务科室展现不同工作页面,内部却又实现了数据共享。 系统页面简单大方,操作轻松方便,在不增加实验室工作量的情况下,能够让监测数据进入系统中,原始记录单等诸多实验室报表可协助生成(不完全生成,需人工签字),随后科室比如质控、综合、主管领导即可对数据进行多层次利用查询,并自动生成各类监测报表。 系统采用流程化工作模式,对不同监测任务实施不同工作流,保证工作的科学和严谨,对于单位内部职工每天待办事宜清晰显示,让内部职工对每天工作都一目了然。系统工作流程可自由配置,工作单可根据按照配置流转相应单位,并且可以对工作流程进行追踪查询,作为领导可以查看到每一项安排工作的流转情况、完成情况和监测结果。 系统支持短信功能,对于领导等科室一些紧急任务可在系统下达后,立刻用短信通知相应工作人员,对于单位紧急通知等也可以进行短信通知,让监测站的工作更加快捷高效。 系统提供深层次数据挖掘功能,能够根据监测数据,快速提供某监测点的多方位数据,比如历年来某月COD 的监测数据变化,几年来某项监测数据的月平均值变化等州族等,为监测站领导决策提供科学依据。 系统生成报表功能强大,除自身已包含众多报表外,可迅速生成 WORD 下各种客户要求的监测报表,并且查阅维护方便。 系统作为平台拓展性强,可以融合其他系统与平台上,并且后期功能升级方便不影响前期功能。 目前系统已经在多个地 方监测站运行,从使用效果来看是比较实用的。

数据仓库包括哪些技术

数据仓库 ,由数据仓库之父敬虚比尔·恩门(Bill Inmon)于1990年提出,主要功能仍是将组织透过资讯系统之联机事务处理(OLTP)经年累月所累积的大量资料,透过数据仓库理论所特有的资料储存架构,做有系统的分析整理,以利各种分析方法如联机分析处理(OLAP)、数据挖掘(Data Mining)之进行,并进而支持如决策支持系统(DSS)、主管资讯系统(EIS)之创建,帮助决策者能快速有效的自大量资料中,分析出有价值的资讯,以利决策拟定亮正燃及快速回应外在环境变动,帮助建构商业智能(BI)。

数据仓库之父比尔·恩门(Bill Inmon)在1991年出版的“Building the Data Warehouse”(《建立数据仓库》)一书中所提出的定义被广泛接受——数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrated)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策清搜(Decision Making Support)。

关于数据仓库技术和数据仓库技术是指将数据从来源端经过抽取的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

标签列表