一元线性回归方程(一元线性回归方程计算器)
本篇文章给大家谈谈一元线性回归方程,以及一元线性回归方程计算器对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
一元线性回归的数学原理
一元线性回归其实就是最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。
利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
根据最小平方法或其他方法,可以从样本数据确定常数项A与回归系数B的值。A、B确定后,有一个X的观测值,就可得到一个Y的估计值。
回归方程是否可靠,估计的误差有多大,都还应经过显著性检验和误差计算。有无显著锋判的相关关系以及样本的大小等等,是影响回归方程可靠性的因素。
扩展资料:
在给定了X和Y的样本观察值之后,离差平方总和的大小依赖于a和b的取值,客观上总有一对a和b的数值能够使离差平方总和达到最小。利用微分法求函数极值的原理。
在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。
不太一般的情况,线性回归模型可以是一个中位数或一李扰些其他的给定X的条件下y的条件分布的分位数作为X的线性函数表示。像所有形式的回归分析一样,线性回归也把焦点放在给定X值的y的条件概率分布,而不哪基旦是X和y的联合概率分布(多元分析领域)。
参考资料来源:百度百科——一元线性回归方程
[img]线性回归方程公式
线性回归方程公式:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)。线性回归方程是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一,应用十分广泛。
一、概念
线性回归方程中变量的相关关系最为简单的是线性相关关系,设随机变量与变量之间存在线性相关关系,则由试验数据得到的点,将散布在某一直线周围。因此,可以认为关于的回归函数的类型为线性函数。
分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分轿稿枝析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
二、计算方法
线性回归方程公式求法:
第一:用所给样本求出两个相关变量的(算术)平均值:
x_=(x1+x2+x3+...+xn)/n
y_=(y1+y2+y3+...+yn)/n
第二:分别计算分子和分母:(两个公式任选其一)
分子=(x1y1+x2y2+x3y3+...+xnyn)-nx_Y_
分母=(x1^2+x2^2+x3^2+...+xn^2)-n*x_^2
第三:计算b:b=分子/分母
用最小二乘法估计参数b,设服从正态分布,分别求对a、b的偏导数并令它们等于零,得方程组解为
其中,且为观测值的样本方差.线性方程称为关于的线性回归方程,称为回归系数,对应的直线称为回归直线.顺便指出,将来还需用到,其中为观测值的样本方差。
先求x,y的平均值X,Y
再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)
后把x,y的平均数X,Y代入a=Y-bX
求出a并代入总的公式y=bx+a得到线性回归方程
(X为xi的平均数,Y为yi的平均数)
三、应用
线性回归方程是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其位置参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。
线性回归有很多实际用途。分为以下两大类:
如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的闭敏X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。
给定一个变量y和一些变量X1,...,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。
在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。
不太一般的情况,线性回归模型可以是一个中位数或一些其他的给定X的条件下y的条件分布的分敬枝位数作为X的线性函数表示。像所有形式的回归分析一样,线性回归也把焦点放在给定X值的y的条件概率分布,而不是X和y的联合概率分布。
一元线性回归方程怎么求?
1. 列计算表,求∑x,消裤∑xx,∑y,∑yy,∑xy。
2.计算Lxx,Lyy,Lxy
伏尘 Lxx=∑(x-xˇ)(x-xˇ)
Lyy=∑(y-yˇ)(y-yˇ)
Lxy=∑(x-xˇ)(y-yˇ)
3.求相关系数,并检验;
r = Lxy /( Lxx Lyy)1/2
2. 求回归系数b和常数拿厅简a;
b=Lxy /Lxx
a=y - bx
3. 列回归方程。
怎么求一元线性回归方程
要确定回归直线方程,只要确定a与回归系数b。回归直线的求法通常是脊慎最小二乘法:离差作为表示xi对应的回归直线纵坐标y与观察值yi的差,其几何意义可用点与其在回归直线竖直方向上的投影间的距离来描述。
数学表达:Yi-y^=Yi-a-bXi,总离差不能用n个离差之和来表示,通常是用离差的平方基核和即(Yi-a-bXi)^2计算。即作为总离差,并使之达到最小,这样回归直线就是所有直线中除去最小值的那一条。这种使“离差平方和最小”的方法,叫做最小二乘法。
扩展资料
回归直线方程指在一组具有相关关系的变量的数据(x与Y)间,一条最好地反映x与y之间的关系直线。
在一组具有相关关系的变量的数据(x与Y)间,通过散点图我们可观察出所有数据点都分布在一条直线附近,这样的直线可以画出许多条,而我们希望其中的一条最好地反映x与Y之间的关系,即我们要找出一条直线,使这条直线“最贴近”已知的数据点。图中最前面的式子式叫做Y对x的回归直线方程,相应的直线叫做回归直线,b叫做回归系数。搏野掘
参考资料:百度百科线性回归方程
一元线性回归方程的计算步骤
1、列计算表,求∑x,∑xx,∑y,∑yy,∑xy。
2、计算Lxx,Lyy,LxyLxx=∑(x-xˇ)(x-xˇ)Lyy=∑(y-yˇ)(y-yˇ)Lxy=∑(x-xˇ)(y-yˇ)
3、求相关系数,并检验;r = Lxy /( Lxx Lyy)1/2
4、求回归系数b和常数a;b=Lxy /Lxxa=y - bx
5、列回归方程。
扩展资料:
根据最小平方法或其他方法,可以从样本数据确定常数项A与回归系数B的值。A、B确定后,有一个X的观测值,就可得到一个Y的估计值。回归方程是否可靠,估计的误差有多大早搏,都还应经过显著性检验和误差计高卜算。有无显著的相关关系以及样本的大小等等,是影响回归方程可靠性的因素。
如果只有一个自戚睁穗变量X,而且因变量Y和自变量X之间的数量变化关系呈近似线性关系,就可以建立一元线性回归方程,由自变量X的值来预测因变量Y的值,这就是一元线性回归预测。
如果因变量Y和自变量X之间呈线性相关,那就是说,对于自变量X的某一值 ,因变量Y对应的取值 不是唯一确定的,而是有很多的可能取值,它们分布在一条直线的上下,这是因为Y还受除自变量以外的其他因素的影响。
这些因素的影响大小和方向都是不确定的,通常用一个随机变量(记为 )来表示。
参考资料来源:百度百科——一元线性回归方程
一元线性回归方程公式的公式以及ab怎么求?
建议你先到 baike.baidu/view/954762 这个地方看一下.b的计算有两个公式,计算结果相同.(不过,我更喜欢使用 △(即差值)计算的那个公式).
回归流程 我 通常这样进行:
1)由所给出的系列值分别计算两个变量的平均值
x平均=(Σxi)/n y平均=(纳李颤Σyi)/n 【Σ是把相应的扰盯值加起来,n是数据组数】
2)计算一系列的差值(即△)
△xi=xi-x平均 【应该有n个△x】;△yi=yi-y平均 【也应该有n个】
3)求出两个 和 值 A》 Σ△xi△yi=△x1*△y1+...+△xn*△yn
B》 Σ△²xi=(△x1)²+...+(△xn)²
4)由公式求出 b b=Σ△xi△yi / Σ△²xi 【通常2)、3)、4)并不分别进行】
5)由公式算出 a a=y平均-b*x平均
然后按格式写出回归方程即洞败得.,10,
关于一元线性回归方程和一元线性回归方程计算器的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。