kafka入门(kafka入门代码)
本篇文章给大家谈谈kafka入门,以及kafka入门代码对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、kafka入门:一个开源的、轻量级、高吞吐、高可用的分布式消息系统
- 2、Kafaka入门(1)- Kafka简介和安装与启动(mac)
- 3、kafka极简入门(三)--创建topic
- 4、[转载]kafka入门笔记
- 5、Kafka相关内容总结(Kafka集群搭建手记)
kafka入门:一个开源的、轻量级、高吞吐、高可用的分布式消息系统
随着信息技术的快速发展及互联网用户规模的急剧增长,计算机所存储的信息量正呈爆炸式增长,目前数据量已进入大规模和超大规模的海量数据时代, 如何高效地存储、分析、处理和挖掘海量数据 已成为技术研究领域的热点和难点问题。而 如何采集和运营管理、分析这些数据 也是大数据处理中一个至关重要的组成环节,这就需要相应的基础设施对其提供支持。针对这个需求,当前业界已有很多开源的消息系统应运而生,kafka就是一款当然非常流行的消息系统。
Kafka是一款开源的、轻量级的、分布式、可分区和具有复制备份的(Replicated)、基于ZooKeeper协调管理的分布式流平台的功能强大的消息系统。作为一个流式处理平台,必须具备以下3个关键特性:
1) 能够允许发布和订阅流数据。
2) 存储流数据时提供相应的容错机制。搏型模
3) 当流数据到达时能够被及时处理。
消息流系统kafka的基本结构包括生产者和消费者,以及kafka集群。
生产者负责生产消息,将消息写入Kafka集群;消费者从Kafka集群中拉取消息。
消息是Kafka通信的基本单位 ,由一个 固定长度的消租罩息头 和一个 可变长度的消息体 构成。
Kafka将 一组消息 抽象归纳为一个主题(Topic),也就是说,一个主题是对消息的一个分类。 生产者将消息指定主题发送到kafka集群,消费者订阅主题或主题的某些分区进行消费。
Kafka将一组消息归纳为一个主题,而 每个主题又被分成一个或多个分区(Partition) 。每个分区由一系列有序、不可变的消息组成,是一个有序队列。 每个分区在物理上对应为一个文件夹 ,分区的命名规则为主题名称后接“—”连接符,之后再接分区编号,分区编号从0开始,编号最大值为分区的总数减1。
分区使得Kafka在并发处理上变得更加容易,理论上来说,分区数越多吞吐量越高,但这要根据集群实际环境及业务场景而定。同时,分区也是Kafka保证消息被顺序消费以及对消息进行负载均衡的基础。
疑问和答案 :分区如何保证消息被顺序消费?每个分区内的消息是有序的,但不同分区间如何保证?猜测是分区从存储空间上比较大,分区个数少。顺序消费的主要因素在分区内的消息,分区间的可以忽略。高吞吐率顺序写磁盘估计也是这个原因。
Kafka只能保证一个分区之内消息的有序性,并不能保证跨分区消息的有序性。 每条消息被追加到相应的分区中,是顺序写磁盘,因此效率非常高,这是Kafka高吞吐率的一个重要保证 。同时与传统消息系统不同的是,Kafka并不会立即删除已被消费的消息,由于磁盘的限制消息也不会一直被存储,因此 Kafka提供两种删除老数据的策略 ,一是基于消息已存储的时间长度,二是基于分区的大小。这两种策略都能通过配置文件进行配置。
每个分区又有一至多个副本(Replica),分区的副本分布在集群的不同代理上,以提高可用性。
从存储角度上分析,分区的每个副本在逻辑上抽象为一个日志(Log)对象,即分区的副本与日志对象是一一对应的。每个主题对应的 分区数 可以在Kafka启动时所加载的配置文件中配置,也可以在创建主题时指定。当然,客户端还可以在主题创建后修改主题的分区数。
为什么副本要分Leader和Follower? 如果没有Leader副本,就需要所有的副本都同时负责读/写请求处理,同时还得保证这些副本之间数据的一致性,假设有n个副本则需要有n×n条通路来同步数据,这样数据的一致性和有序性就很难保证。
为解决这个问题,Kafka选择分区的一个副本为Leader,该分区其他副本为Follower,只有 Leader副本 才负责处理客户端 读/写请求 ,Follower副本从Leader副本同步数据。
引入Leader副本后基缓客户端只需与Leader副本进行交互,这样数据一致性及顺序性就有了保证。Follower副本从Leader副本同步消息,对于n个副本只需n-1条通路即可,这样就使得系统更加简单而高效。
副本Follower与Leader的角色并不是固定不变的,如果Leader失效,通过相应的选举算法将从其他Follower副本中选出新的Leader副本。
疑问 :leader副本和follower副本是如何选出来的?通过zookeeper选举的嘛?
Kafka在ZooKeeper中动态维护了一个 ISR(In-sync Replica) ,即保存同步的副本列表,该列表中保存的是与Leader副本保持消息同步的所有副本对应的代理节点id。 如果一个Follower副本宕机或是落后太多 ,则该Follower副本节点将 从ISR列表中移除 。 本书用宕机 来特指某个代理失效的情景,包括但不限于代理被关闭,如代理被人为关闭或是发生物理故障、心跳检测过期、网络延迟、进程崩溃等。
任何发布到分区的消息会被直接追加到日志文件的尾部(分区目录下以“.log”为文件名后缀的数据文件),而每条 消息 在日志文件中的位置都会对应一个按序递增的 偏移量 。偏移量是一个分区下严格有序的 逻辑值 ,它并不表示消息在磁盘上的物理位置。由于Kafka几乎不允许对消息进行随机读写,因此Kafka并没有提供额外索引机制到存储偏移量。
消费者可以通过控制消息偏移量来对消息进行消费 ,如消费者可以指定消费的起始偏移量。 为了保证消息被顺序消费,消费者已消费的消息对应的偏移量也需要保存 。需要说明的是,消费者对消息偏移量的操作并不会影响消息本身的偏移量。旧版消费者将消费偏移量保存到ZooKeeper当中, 而新版消费者是将消费偏移量保存到Kafka内部一个主题当中。 当然,消费者也可以自己在外部系统保存消费偏移量,而无需保存到Kafka中。
推测 :一个主题有多个分区,一个分区有多个副本。一个主题(一类消息)有多个分区(消息被分段),一个分区(每段消息)有多个副本(每段消息的副本数)。消息一旦发给kafka,就会分配一个偏移量,在多个副本中的偏移量是一样的。这样的话,消费者通过偏移量消费时对于多个副本就没有差异性。
Kafka集群由一个或多个Kafka实例构成,每一个Kafka实例称为代理(Broker),通常也称代理为Kafka服务器(KafkaServer)。在生产环境中Kafka集群一般包括一台或多台服务器,我们可以在一台服务器上配置一个或多个代理。 每一个代理都有唯一的标识id,这个id是一个非负整数 。在一个Kafka集群中,每增加一个代理就需要为这个代理配置一个与该集群中其他代理不同的id, id值可以选择任意非负整数即可,只要保证它在整个Kafka集群中唯一,这个id就是代理的名字,也就是在启动代理时配置的broker.id对应的值。
生产者(Producer)负责将消息发送给代理,也就是向Kafka代理发送消息的客户端。
消费者(Comsumer)以拉取(pull)方式拉取数据,它是消费的客户端。在Kafka中 每一个消费者都属于一个特定消费组 (ConsumerGroup),可以为每个消费者指定一个消费组,以groupId代表消费组名称,通过group.id配置设置。 如果不指定消费组 ,则该消费者属于默认消费组test-consumer-group。
每个消费者有一个全局唯一的id ,通过配置项client.id指定, 如果客户端没有指定消费者的id, Kafka会自动为该消费者生成一个全局唯一的id,格式为${groupId}-${hostName}-${timestamp}-${UUID前8位字符}。 同一个主题的一条消息只能被同一个消费组下某一个消费者消费 ,但不同消费组的消费者可同时消费该消息。 消费组是Kafka用来实现对一个主题消息进行广播和单播的手段 ,实现消息广播只需指定各消费者均属于不同的消费组,消息单播则只需让各消费者属于同一个消费组。
推论: kafka消息是按照消息类型(主题),在一个消费者组中只能消费一次。也就是一个消费者组只消费一类型的消息。如果某个服务要消费一类消息,必须将自己置为不同的消费者组。
Kafka利用ZooKeeper保存相应元数据信息, Kafka元数据信息包括如代理节点信息、Kafka集群信息、旧版消费者信息及其消费偏移量信息、主题信息、分区状态信息、分区副本分配方案信息、动态配置信息等。 Kafka在启动或运行过程当中会在ZooKeeper上创建相应节点 来保存元数据信息, Kafka通过监听机制在这些节点注册相应监听器来监听节点元数据的变化 ,从而由ZooKeeper负责管理维护Kafka集群,同时通过ZooKeeper我们能够很方便地对Kafka集群进行水平扩展及数据迁移。
Kafaka入门(1)- Kafka简介和安装与启动(mac)
Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。kafka 是一个高性能的消息队列,也是一个分布式流处理平台。
kafka中文网
kafka官网
Producer :Producer即生产者,消息的产生者,是消息的入口。
kafka cluster :
Broker :Broker是kafka实例,每个服务器上有一个或多个kafka的实例,姑且认为每个broker对应一台服务器。一个集群由多个broker组成,集群内的broker都有一个不重复的编号,如图中的broker-0、broker-1等……
Topic :消息的主题,可以理解为消息的分类,kafka的数据就保存在topic。在每个broker上都可以创建多个topic。
Partition :Topic的分区,每个topic可以有多个分区,分区的作用是做负载,提高kafka的吞吐量。 同一个topic在不同的分区的数据是不重复的 ,partition的表现形式就是一个一个的文件夹!
Replication : 每一个分区都有多个副本 ,副本的作用是做备胎。当主分区(Leader)故障的时候会选择一个备胎(Follower)上位,成为Leader。在kafka中默认副本的最大数量是10个,且副本的数量不能大于Broker的数量,follower和leader绝对是在不同咐明的机器,同一机器对同一个分区也只可能存放一个副本(包括自己)。
Message :每一条发送的消息主体。
Consumer :消费者,即消息的消费方,是消息的出口。
Consumer Group :将多个消费组成一个消费者组。在kafka的设计中 同一个分区的数据只能被同一消费者组中的某一个消费者消费 。Partition 的分配问题,即确定哪个 Partition 由哪个 Consumer 来消费。Kafka 有两种分配策略,一个是 RoundRobin,一个是 Range,默认为Range。
一个消费者组内也让轿可以订阅多个topic
多个消费组可以订阅同一个topic 。
Zookeeper :kafka集群依赖zookeeper来保存集群的的元信息,来保证系统的可用性。
使用brew进行安装,非常方便。
ZooKeeper是一个分布式的,开放源码的 分布式应用程序协调服务 ,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。
kafka是基于zookeeper的,启动kafka之前,需要先启动zookeeper
查看启动是否成功
启动kafka
查看启动是否成功
查看topic列表
新坦简肆起一个终端,作为生产者,用于发送消息,每一行算一条消息,将消息发送到kafka服务器
新起一个终端作为消费者,接收消息
服务关闭的顺序是先kafka,然后zookeeper
再过半小时,你就能明白kafka的工作原理了
Kafka架构原理,也就这么回事!
[img]kafka极简入门(三)--创建topic
回顾 kafka极简入门(二)--安装
topic是kafka的生产者和消费者最小交互的单位,我们先从topic入手,创建第一个topic.
或
所以执行上面命令将会创建一个名为mytest的topic,该topic下面有1个分区,并且该分区只有1个猛并副本。
PS:除了手动创建主题外,还可以将代理配置为在发布不存在的主题时自动创建主题
Partition:0 表示该分区的id为0
leader: 9 表示分区的首领副本所在的broker(本例子中broker.id配置为9,所以这里显示9,具体在config/server.properties配置。这里只有一个分区,所以首领分区也就是自己)
Replicas: 9 表示分区的跟随副本所在的broker
Isr: 9 表示分镇槐区的同步副本所在的broker(同步副本可以认御知友为跟首领副本准实时同步的副本,可以配置判断条件,后面会讲,首领副本挂掉后,服务器会从同步副本中选举新的首领)
发送三个消息,分别是hello, world和!
注意: --from-beginning 表示从最开始的offset处开始消费。如果不写表示从最新的offset处消费,那么先发送了消息再开启消费者是收不到已发送的信息的
[转载]kafka入门笔记
小马最近学习了《深入理解kafka 核心设计与实践原理》朱忠华 著 一书,机缘巧合中又看到了这篇文章,觉得整理得很是详细和全面,图文并茂很直观,在此摘录。
精华总结:依靠主题分区来类毁清核似分库分表的方式提高性能,用 副本主从 同步+ ISR(偏移量和HW) 来保证消息队列的可靠性,消费者提交 消费位移 来保证消息不丢失和重复消费等,用ZK来处理 服务发现 ,负载均衡,选举,集群管理,消费位移记录(以被推荐记录于kafka主题内)等。
HW之前的消息才能被消费者拉取,理解为都同步备份完了,才算生产者消息提交成功,对消费者可见。这种ISR机制影响了性能但是保证了可靠性,保证消息不丢失。消费位移提交,默认的是自动提交,异常下消息会重复消费会丢失,但可以参数配置手动提交,自行在业务处理完再提交。消费者拉的方式自主获取消费,便于消费者自行控制消费速率。默认分区规则是哈希一致性方式。
相比 Redis消息队列 本身的可靠性就不如,被消费者拉取完就认为消费完了,消息丢失,所以一般需要自行维护ack机制。
Kafka的消息是保存或缓存在磁盘上的,一般认为在磁盘上读写数据是会降低性能的,因为寻址会比较消耗时间,但是实际上,Kafka的特性之一就是高吞吐率。即使是普通的服务器, Kafka也可以轻松支持每秒百万级的写入请求 ,超过了大部分的消息中间件,这种特性也使得Kafka在日志处理等海量数据场景广泛应用。 Kafka速度的秘诀在于 ,它把所有的消息都变成一个批量的文件,并且进行合理的批量压缩,减少网络IO损耗,通过mmap提高I/O速度,写入数据的时候由于单个Partion是末尾添加所以速度最优;读取数据的时候配合sendfile直接暴力输出。
一个典型的 Kafka 体系架构包括若干 Producer(消息生产纤掘者),若干 broker(作为 Kafka 节点的服务器),若干 Consumer(Group),以及一个 ZooKeeper 集群。Kafka通过 ZooKeeper 管理集群配置、选举 Leader 以及在 consumer group 发生变化时进行 Rebalance(即消费者负载均衡,在下一课介绍)。Producer 使用 push(推)模式将消息发布到 broker,Consumer 使用 pull(拉)模式从 broker 订阅并消费消息。
Kafka 节点的 broker涉及 Topic、Partition 两个重要概念
在 Kafka 架构中,有几个术语:
Producer :生产者,即消息发送者,push 消息到 Kafka 集群中的 broker(就是 server)中;
Broker :Kafka 集群由多个 Kafka 实例(server) 组成,每个实例构成一个 broker,说白了就是服务器;
Topic :producer 向 kafka 集群 push 的消息会被归于某一类别,即Topic,这本质上只是一个逻辑概念,面向的对象是 producer 和 consumer,producer 只需要关注将消息 push 到哪一个 Topic 中,而 consumer 只需要关心自己订阅了哪个 Topic;
Partition :每一个 Topic 又正举被分为多个 Partitions,即物理分区;出于负载均衡的考虑,同一个 Topic 的 Partitions 分别存储于 Kafka 集群的多个 broker 上;而为了提高可靠性,这些 Partitions 可以由 Kafka 机制中的 replicas 来设置备份的数量;如上面的框架图所示,每个 partition 都存在两个备份;
Consumer :消费者,从 Kafka 集群的 broker 中 pull 消息、消费消息;
Consumer group :high-level consumer API 中,每个 consumer 都属于一个 consumer-group,每条消息只能被 consumer-group 中的一个 Consumer 消费,但可以被多个 consumer-group 消费;
replicas :partition 的副本,保障 partition 的高可用;
leader :replicas 中的一个角色, producer 和 consumer 只跟 leader 交互;
follower :replicas 中的一个角色,从 leader 中复制数据,作为副本,一旦 leader 挂掉,会从它的 followers 中选举出一个新的 leader 继续提供服务;
controller :Kafka 集群中的其中一个服务器,用来进行 leader election 以及 各种 failover;
ZooKeeper :Kafka 通过 ZooKeeper 来存储集群的 meta 信息等,文中将详述。
一个 topic 可以认为是一类消息,每个 topic 将被分成多个 partition,每个 partition 在存储层面是 append log 文件。任何发布到此 partition 的消息都会被追加到log文件的尾部,每条消息在文件中的位置称为 offset(偏移量),offset 为一个 long 型的数字,它唯一标记一条消息。 Kafka 机制中,producer push 来的消息是追加(append)到 partition 中的,这是一种顺序写磁盘的机制,效率远高于随机写内存,如下示意图:
Kafka 中 topic 的每个 partition 有一个预写式的日志文件,虽然 partition 可以继续细分为若干个 segment 文件,但是对于上层应用来说,仍然可以将 partition 看成最小的存储单元(一个有多个 segment 文件拼接的 “巨型” 文件),每个 partition 都由一些列有序的、不可变的消息组成,这些消息被连续的追加到 partition 中。
上图中有两个新名词:HW 和 LEO。这里先介绍下 LEO,LogEndOffset 的缩写,表示每个 partition 的 log 最后一条 Message 的位置。HW 是 HighWatermark 的缩写,是指 consumer 能够看到的此 partition 的位置,这个涉及到多副本的概念,这里先提及一下,下文再详述。
言归正传,为了提高消息的可靠性,Kafka 每个 topic 的 partition 有 N 个副本(replicas),其中 N(大于等于 1)是 topic 的复制因子(replica fator)的个数。Kafka 通过多副本机制实现故障自动转移,当 Kafka 集群中出现 broker 失效时,副本机制可保证服务可用。对于任何一个 partition,它的 N 个 replicas 中,其中一个 replica 为 leader,其他都为 follower,leader 负责处理 partition 的所有读写请求,follower 则负责被动地去复制 leader 上的数据。如下图所示,Kafka 集群中有 4 个 broker,某 topic 有 3 个 partition,且复制因子即副本个数也为 3:
如果 leader 所在的 broker 发生故障或宕机,对应 partition 将因无 leader 而不能处理客户端请求,这时副本的作用就体现出来了:一个新 leader 将从 follower 中被选举出来并继续处理客户端的请求。
上一节中讲到了同步副本队列 ISR(In-Sync Replicas)。虽然副本极大的增强了可用性,但是副本数量对 Kafka 的吞吐率有一定影响。默认情况下 Kafka 的 replica 数量为 1,即每个 partition 都只有唯一的 leader,无 follower,没有容灾能力。为了确保消息的可靠性,生产环境中,通常将其值(由 broker 的参数 offsets.topic.replication.factor 指定)大小设置为大于 1,比如 3。 所有的副本(replicas)统称为 Assigned Replicas,即 AR。ISR 是 AR 中的一个子集,由 leader 维护 ISR 列表,follower 从 leader 同步数据有一些延迟(由参数 replica.lag.time.max.ms 设置超时阈值),超过阈值的 follower 将被剔除出 ISR, 存入 OSR(Outof-Sync Replicas)列表,新加入的 follower 也会先存放在 OSR 中。AR=ISR+OSR。
上面一节还涉及到一个概念,即 HW。HW 俗称高水位,HighWatermark 的缩写,取一个 partition 对应的 ISR 中最小的 LEO 作为 HW,consumer 最多只能消费到 HW 所在的位置。另外每个 replica 都有 HW,leader 和 follower 各自负责更新自己的 HW 的状态。对于 leader 新写入的消息,consumer 不能立刻消费,leader 会等待该消息被所有 ISR 中的 replicas 同步后更新 HW,此时消息才能被 consumer 消费。这样就保证了如果 leader 所在的 broker 失效,该消息仍然可以从新选举的 leader 中获取。对于来自内部 broker 的读取请求,没有 HW 的限制。
下图详细的说明了当 producer 生产消息至 broker 后,ISR 以及 HW 和 LEO 的流转过程:
由此可见,Kafka 的复制机制既不是完全的同步复制,也不是单纯的异步复制。事实上,同步复制要求所有能工作的 follower 都复制完,这条消息才会被 commit,这种复制方式受限于复制最慢的 follower,会极大的影响吞吐率。而异步复制方式下,follower 异步的从 leader 复制数据,数据只要被 leader 写入 log 就被认为已经 commit,这种情况下如果 follower 都还没有复制完,落后于 leader 时,突然 leader 宕机,则会丢失数据,降低可靠性。而 Kafka 使用 ISR 的策略则在可靠性和吞吐率方面取得了较好的平衡。
Kafka 的 ISR 的管理最终都会反馈到 ZooKeeper 节点上,具体位置为:
/brokers/topics/[topic]/partitions/[partition]/state
目前,有两个地方会对这个 ZooKeeper 的节点进行维护。
Controller 来维护:Kafka 集群中的其中一个 Broker 会被选举为 Controller,主要负责 Partition 管理和副本状态管理,也会执行类似于重分配 partition 之类的管理任务。在符合某些特定条件下,Controller 下的 LeaderSelector 会选举新的 leader,ISR 和新的 leader_epoch 及 controller_epoch 写入 ZooKeeper 的相关节点中。同时发起 LeaderAndIsrRequest 通知所有的 replicas。
leader 来维护:leader 有单独的线程定期检测 ISR 中 follower 是否脱离 ISR,如果发现 ISR 变化,则会将新的 ISR 的信息返回到 ZooKeeper 的相关节点中。
考虑这样一种场景:acks=-1,部分 ISR 副本完成同步,此时leader挂掉,如下图所示:follower1 同步了消息 4、5,follower2 同步了消息 4,与此同时 follower2 被选举为 leader,那么此时 follower1 中的多出的消息 5 该做如何处理呢?
类似于木桶原理,水位取决于最低那块短板。
如上图,某个 topic 的某 partition 有三个副本,分别为 A、B、C。A 作为 leader 肯定是 LEO 最高,B 紧随其后,C 机器由于配置比较低,网络比较差,故而同步最慢。这个时候 A 机器宕机,这时候如果 B 成为 leader,假如没有 HW,在 A 重新恢复之后会做同步(makeFollower) 操作,在宕机时 log 文件之后直接做追加操作,而假如 B 的 LEO 已经达到了 A 的 LEO,会产生数据不一致的情况,所以使用 HW 来避免这种情况。 A 在做同步操作的时候,先将 log 文件截断到之前自己的 HW 的位置,即 3,之后再从 B 中拉取消息进行同步。
如果失败的 follower 恢复过来,它首先将自己的 log 文件截断到上次 checkpointed 时刻的 HW 的位置,之后再从 leader 中同步消息。leader 挂掉会重新选举,新的 leader 会发送 “指令” 让其余的 follower 截断至自身的 HW 的位置然后再拉取新的消息。
当 ISR 中的个副本的 LEO 不一致时,如果此时 leader 挂掉,选举新的 leader 时并不是按照 LEO 的高低进行选举,而是按照 ISR 中的顺序选举。
在 consumer 对指定消息 partition 的消息进行消费的过程中,需要定时地将 partition 消息的 消费进度 Offset 记录到 ZooKeeper上 ,以便在该 consumer 进行重启或者其它 consumer 重新接管该消息分区的消息消费权后,能够从之前的进度开始继续进行消息消费。Offset 在 ZooKeeper 中由一个专门节点进行记录,其节点路径为:
#节点内容就是Offset的值。/consumers/[group_id]/offsets/[topic]/[broker_id-partition_id]
PS:Kafka 已推荐将 consumer 的 Offset 信息保存在 Kafka 内部的 topic 中,即:
__consumer_offsets(/brokers/topics/__consumer_offsets)
并且默认提供了 kafka_consumer_groups.sh 脚本供用户查看consumer 信息(命令:sh kafka-consumer-groups.sh –bootstrap-server * –describe –group *)。在当前版本中,offset 存储方式要么存储在本地文件中,要么存储在 broker 端,具体的存储方式取决 offset.store.method 的配置,默认是存储在 broker 端。
在基于 Kafka 的分布式消息队列中,ZooKeeper 的作用有:broker 注册、topic 注册、producer 和 consumer 负载均衡、维护 partition 与 consumer 的关系、记录消息消费的进度以及 consumer 注册等。
参考原文:
再谈基于 Kafka 和 ZooKeeper 的分布式消息队列原理
Kafka相关内容总结(Kafka集群搭建手记)
Kafka is a distributed,partitioned,replicated commit logservice。它提供了类似于JMS的特性,但是在设计实现上完全不同,此外它并不是JMS规范的实现。kafka对消息保存时根据Topic进行归类,发送消息者成为Producer,消息接受者成为Consumer,此外kafka集群有多个kafka实例组成,每个实例(server)成为broker。无论是kafka集群,还是producer和consumer都依赖于zookeeper来保证系统可用性集群保存一些meta信息。
入门请参照:
在此不再赘述。
这部分不是本文的重点,但是kafka需要用到kafka集群,所以先搭建kafka集群。
从kafka官方文档看到,kafka似乎在未来的版本希望抛弃zookeep集群,自己维护集群的一致性,拭目以待吧。
我们搭建集群使用的是三台同机房的机团枯器,因为zookeeper不怎么占资源也不怎么占空间(我们的业务目前比较简单),所以三台机器上都搭建了zookeeper集群。
搭建zookeeper集群没什么难度,参考文档:
下面列一下我的配置并解析:
一共用三台物理机器,搭建一个Kafka集群。
每台服务器的硬盘划分都是一样的,每个独立的物理磁盘挂在一个单独的分区里面,这样很方便用于Kafka多个partition的数据读写与冗余。
/data1比较小,为了不成为集群的瓶颈,所以/data1用于存放kafka以及Zookeeper
每台机器的磁盘分布如下:
下面是kafka的简单配置,三台服务器都一样,如有不一致的在下文有说明。
kafka安装在目录/usr/local/kafka/下,下面的说明以10.1.xxx.57为例。
最重要的配置文件server.properties,需要配置的信息如下:
从上面的配置看到,kafka集群不需要像hadoop集群那样,配置ssh通讯,而且一个kafka服务器(官方文档称之为broker,下面统一使用这个称呼)并不知道其他的kafka服务器的存在,因此你需要逐个broker去启动kafka。各个broker根据自己的配置,会自动去配置文件上的zk服务器报到,这就是一个有zk服务器粘合起来的kafka集群。
我写了一个启动脚本,放在 /usr/local/kafka/bin 下面。启动脚本每个broker都一样:
如同kafka集群里面每一个broker都需要单独启动一样,蔽或携kafka集群里面每一个broker都需要单独关闭。
官方给出的关闭脚本是单独运行 bin/kafka-server-stop.sh
但是我运行的结果是无法关闭。打开脚本一看,才发现是最简单的办法,发一个TERM信号到kafka的java进程,官方脚本给出的grep有点问题。
发信号之后,一直tail着kafka日志,看到正常关闭。宏伏
指定zookeeper服务器,topic名称是LvsKafka(注意topic名称不能有英文句号(.)和下划线(_),否则会通不过,理由是名称会冲突,下文对此略有解析)
replication-factor指出重复因子是2,也就是每条数据有两个拷贝,可靠性考虑。
partitions 指出需要多少个partition,数据量大的多一点,无论生产和消费,这是负载均衡和高并发的需要。
可以看到刚才新建的24个partition,比如partition 5, 他的leader是broker 59,也就是10.1.xxx.59这台机器。
建立topic时我们指出需要2个拷贝,从上面的输出的Replicas字段看到,这两个拷贝放在59,58两个机器,也就是10.1.xxx.59和10.1.xxx.58.
Isr表示当前partition的所有拷贝所在的机器中,哪些是还活着(可以提供服务)的。现在是59和58都还存活。
这个命令另外还会看到一些类似于下面的内容:
__consumer_offsets到底是什么呢?其实就是客户端的消费进度,客户端会定时上报到kafka集群,而kafka集群会把每个客户端的消费进度放入一个自己内部的topic中,这个topic就是__consumer_offsets。我查看过__consumer_offsets的内容,其实就是每个客户端的消费进度作为一条消息,放入__consumer_offsets这个topic中。
这里给了我们两个提示:
1、kafka自己管理客户端的消费进度,而不是依靠zk,这就是kafka官方文档说的kafka未来会抛弃zk的底气之一;
2、留意到这个kafka自己的topic是带下划线的,也就是,kafka担心我们自己建的topic如果带下划线的话会跟这些内部自用的topic冲突;
关于kafka入门和kafka入门代码的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。